Stacking Stairs Against the Memory Wall

By Nicole Hemsoth

April 2, 2013

Last year at Intel’s Developer Forum, the chipmaker unfurled a plan it cooked up with Micron to release “real” stacked memory into the world. The concept was too appealing to ignore—a potential solvent to dissolve the parallel DRAM performance and efficiency wall, not to mention backed by well-known vendors.

The need in the market isn’t easy to ignore either. With ever-mounting CPU advancements that promise superior performance, the blame for lousy delivery on those chip promises lies squarely on memory. Finding a way to refine how quickly, not to mention efficiently, memory can feed dashing CPUs is a priority–and its one that several vendors have been eyeing.

While Micron and Intel weren’t the first or only to propose clicking together 3D memory, the news cycle around the technology did heat up. Since then, several vendors have stacked their chips on the betting table, including NVIDIA with its recent Volta announcement.

Not long ago we sat down with former Cray scientist, Steve Scott, who is now CTO for the Tesla division at NVIDIA. During our chat, which went beyond GPU computing, we talked about the memory wall and how approaches like stacked DRAM are still “not ready for primetime.” He noted that the challenges of stacking memory are limited by some pure physics barriers—at least if users are going to see bandwidth in the arena of one terabyte per second, as it claims will be possible with its stacked solution by around 2015 with the rollout of their own spin on the stack, Volta.

Of course, not everyone agrees with the assertion that the approach isn’t ready for primetime, particularly those who have been pushing 3D memory concepts—and getting some sizable industry backing in the process. Count among that crowd veteran semiconductor giant, Micron, which is staking a portion of its future on being the foundational force behind ultra-dense stacked memory with its Hybrid Memory Cube.

Just as with other tech that promises to revolutionize performance and efficiency, stacked DRAM could put a big dent in the network and high performance computing side of the memory wall says Mike Black, who serves chief technology strategist for Micron’s Hybrid Memory Cube (HMC). Black helped spearhead an effort announced today that is set to standardize on this technology and make Micron, Samsung and its partners the rally point for the big takeoff they predict for the technology.

Sloughing off the assertion about the HMC not being ready for real production, the Hybrid Memory Consortium is out to bolster stacked memory via an open standard that a vendor community can build on. Supported by founding partner Samsung and a bevy of developers and adopters including Altera, IBM, ARM, Xilinx and others, the effort extended today to set a fresh global standard to bring the dense-memory approach into motion.

The team behind the standard has been working for close to two years to deliver on the final specifications for HMC interface standards. As Jim Elliot, VP of Memory Planning at Samsung said today, the ideal outcome is that “system designers and manufacturers will be able to get new green memory solutions that outperform other memory options offered today.”

As the group noted:

The achieved specification provides an advanced, short-reach (SR) and ultra short-reach (USR) interconnection across physical layers (PHYs) for applications requiring tightly coupled or close-proximity memory support for FPGAs, ASICs and ASSPs, such as high-performance networking, and test and measurement. The next goal for the consortium is to further advance standards designed to increase data rate speeds for SR from 10, 12.5 and 15Gb up to 28Gb. Speeds for USR interconnections will be driven from 10 up to 15Gb. The next level of specification is projected to gain consortium agreement by the first quarter of 2014.

For Micron and the partners they’ve rallied for the Hybrid Memory Cube Consortium (an effort they launched with Samsung), stacked memory is a current reality–and one that presents a viable production opportunity, not to mention a fifteen-fold boost per cube over standard approaches and stated 70% energy usage reduction per bit than average DDR3 DRAM.

And besides, notes Micron’s Black, there wasn’t a lot of value for a company like Micron to be floating around in niche offering territory. To lead in this still immature space they need the backing of a larger community of users, developers and vendors.

There is little doubt that there’s a wall to be scaled on performance and efficiency fronts when it comes to traditional approaches to DRAM, claims Black. The Hybrid Memory Cube technology that his company has led seeks to scale the wall via a memory architecture that matches a high-speed logic layer with a stack of through-silicon via (TSV) bonded memory die.

Micron points to the reality of this technology, noting that the stacked architecture has been shown to  do everything but wash the dishes by kicking out the slower parallel interfaces of current DDR3s to create shorter, more efficient pathways and using 90% less energy than current RDIMMs via the more dense memory approach.

In an effort to get a production-ready offering, Micron launched a demo platform a couple of years ago to vet out some of the challenges that come with trying to cobble together a heterogeneous package of DRAM and logic devices on the same slice.

Black said that when it came to addressing challenges during that test phase, the biggest hurdle was in the TSV technology itself—more specifically, making it viable and ready for mass production. “There was a lot of physics and learning as we developed from that point,” he noted. “We had to ask what was missing, how small in diameter is it possible to make a TSV, what’s the best conductive material, how to negotiate the radio between the TSV diameter and the aspect ratio of the thickness of the silicon wafer—more learning had to happen as we kept stacking.”

Micron sees a day on the horizon when they’ll be able to stack beyond the four and eight-high DRAM units that are a current possibility. When they release this fall, they’ll be able to offer 160 gigabits of bandwidth—so basically a terabit of bandwidth per cube. Of course, once users start blocking multiple cubes together it’s possible to further increase total bandwidth. By the 2016 point, Black says they’ll likely double the bandwidth they’re able to offer now.

Micron plans to start sampling their stacked DRAM device this fall and will ramp it into production in the first half of next year.

Related Articles

Volta Adds Charge to GPU Roadmap

MetaRAM Launches New Memory Technology

Penguin Pushes Envelope on Compute Density

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This