Data Protection: One Size Does Not Fit All

By Paul Carpentier

April 10, 2013

In the course of IT history, many schemes have been devised and deployed to protect data against storage system failure, especially disk drive hardware. These protection mechanisms have nearly always been variants on two themes: duplication of files or objects (backup, archiving, synchronization, remote replication come to mind); or parity-based schemes at disk level (RAID) or at object level (erasure coding, often also referred to as Reed-Solomon coding). Regardless of implementation details, the latter always consists of the computation and storage of “parity” information over a number of data entities (whether disks, blocks or objects). Many different parity schemes exist, offering a wide range of protection trade-offs between capacity overhead and protection level – hence their interest.

Erasure coding:

As of late, erasure coding has received a lot of attention in the object storage field as a ‘one-size-fits-all’ approach to content protection. This is a stretch. Erasure coding is a solid approach to storage footprint reduction for an interesting but bounded field of use cases, involving BOTH large streams AND large clusters, but at the cost of sacrificing the numerous use cases that involve small streams, small clusters, or a combination of the two.

Most readers will be familiar with the concept of RAID content protection on hard disk drives. For example, the contents of a set of five drives is used to compute the contents of what is called a parity drive adding one more drive to the RAID set for a total of six drives. Of the total set of six, if any single drive fails, the content that is lost can be rebuilt from the five remaining drives. Aside such a 5+1 scheme, many others are possible, where even multiple drives can fail simultaneously and yet the full content can be rebuilt: there is a continuum in the trade-off between footprint and robustness.

More recently, the same class of algorithms that is used for RAID has been applied to the world of object storage: they are commonly called Erasure Codes. The concept is similar: imagine an object to be stored in a cluster. Now, rather than storing and replicating it wholly we will cut the incoming stream into (say) six segments in a 5:1 scheme each with parity information. Similar to the RAID mechanism above, any missing segment out of the six can be rebuilt from the five remaining ones, hence the 1. This provides a mechanism to survive a failed disk drive without making a full replica: the footprint overhead is just 20 percent here rather than 100 percent with comparable data durability.

Beyond this “5+1” scheme, many more Erasure Coding (EC) schemes are possible. They can survive as many disk failures as their number of parity segments: a 10+6 scheme can survive six simultaneous segment failures without data loss, for instance. Here the overhead will be 60 percent ((10+6)/10).

Erasure coding comes with trade-offs

The underlying objective is clear: provide protection against failure at lower footprint cost. However, as usual, there is no such thing as a ‘free lunch.’ There are trade-offs to be considered when compared to replication. The key is to have the freedom to choose the best protection for each particular use case.

When chopping up objects to store the resulting segments across a number of nodes, the “physical” object count of the underlying storage system is multiplied (e.g., for a 10:6 scheme, it’s multiplied by 16). Not all competing object storage systems handle high object count well. It is also clear that the granularity (i.e., minimum file size) of the underlying file system or object storage system will play a role in suggesting how small an object can be to be economically stored using erasure coding. It doesn’t really make sense from an efficiency perspective to store, say, a 50K object using a 10:6 erasure coding scheme if there is a file system at the core of a storage system. This is because file systems still segment files into blocks with minimum block sizes. A common threshold for this block size for a Linux file system is 32K so the resulting storage needed for a 50K file using a 10:6 erasure coding scheme would be would be 512K (32K * 16 segments) or a 10X increase in footprint. As we will see replication is a much better approach for small files.

Replication:

The simplest form of protective data redundancy is replication, with one or more additional copies of an “original” object being created and maintained to be available if that original somehow gets damaged or lost. In spite of the recent hype around erasure coding, we will see that there still are substantial use case areas where replication clearly is the superior option. For the sake of the example, imagine a cluster of a 100 CPUs with one disk drive each, and 50 million objects with 2 replicas each, 100 million objects grand total. When we speak of replicas in this context, we mean an instance – any instance – of an object; there is no notion of “original” or “copy.” Two replicas equal a grand total of two instances of a given object, somewhere in the cluster, on two randomly different nodes. When an object loss is detected a recovery cycle begins. Data loss only occurs if both replicas are lost which is why it is important to store replicas on different nodes and if possible different locations. It is also important to have efficient and rapid recovery cycles; you want to ensure that your objects are quickly replicated in case of an overlapping recovery cycle which may lead to data loss. If there are three replicas per object, three overlapping recovery cycles (a very low probability event) will be required to cause any data loss.

Replication and Erasure combined is the answer

As so often in IT, there is no single perfect solution to a wide array of use cases. In object storage applications, cluster sizes run the gamut between just a few nodes built into a medical imaging modality to thousands of nodes spanning multiple datacenters, with object sizes ranging between just a few kilobytes for an email message and hundreds of gigabytes for seismic activity data sets. If we want to fulfill the economic and manageability promises of the single unified storage, we need technology that is fully capable of seamlessly adapting between those use cases.

To deal with the velocity and variability of unstructured information, organizations are increasingly turning to cloud storage infrastructures to manage their data in a cost-effective, just-in-time manner, while others may need the robustness of big data repositories to handle the volume that today’s boundless storage requires. A combination of both replication and erasure coding, combined into a singular object storage solution, will provide the best option to access and analyze data regardless of object size, object count or storage amount while ensuring data integrity aligned with business value. Traditional file systems simply cannot provide the ease of management and accessibility required for cloud storage, nor will they provide the massive scalability and footprint efficiency required for big data repositories. The future of both cloud storage and big data remain firmly entrenched in an object storage solution that incorporates both replication and erasure coding into its architecture to overcome the limitations of either one technology.

To see an in depth paper on “Replication and Erasure Coding Explained,” visit http://www.caringo.com/.

About the Author

Known as the father of the Content Addressing concept, Paul Carpentier invented the patent pending scalable and upgradeable security that is at the heart of Caringo. He was the architect of SequeLink – the first client/server middleware product to connect heterogeneous front ends running over multiple networks to multiple databases on the server side. Paul founded Wave Research and conceived FileWave, the first fully automated, model-driven software distribution and management system. At FilePool, he invented the technology that created the Content Addressed Storage industry. FilePool, was sold to EMC who turned CAS into a multi-billion dollar marketplace. Caringo CAStor, based on two of Mr. Carpentier’s six patents promises to revolutionize the data storage business in much the same manner that CAS created a whole new marketplace.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This