Data Protection: One Size Does Not Fit All

By Paul Carpentier

April 10, 2013

In the course of IT history, many schemes have been devised and deployed to protect data against storage system failure, especially disk drive hardware. These protection mechanisms have nearly always been variants on two themes: duplication of files or objects (backup, archiving, synchronization, remote replication come to mind); or parity-based schemes at disk level (RAID) or at object level (erasure coding, often also referred to as Reed-Solomon coding). Regardless of implementation details, the latter always consists of the computation and storage of “parity” information over a number of data entities (whether disks, blocks or objects). Many different parity schemes exist, offering a wide range of protection trade-offs between capacity overhead and protection level – hence their interest.

Erasure coding:

As of late, erasure coding has received a lot of attention in the object storage field as a ‘one-size-fits-all’ approach to content protection. This is a stretch. Erasure coding is a solid approach to storage footprint reduction for an interesting but bounded field of use cases, involving BOTH large streams AND large clusters, but at the cost of sacrificing the numerous use cases that involve small streams, small clusters, or a combination of the two.

Most readers will be familiar with the concept of RAID content protection on hard disk drives. For example, the contents of a set of five drives is used to compute the contents of what is called a parity drive adding one more drive to the RAID set for a total of six drives. Of the total set of six, if any single drive fails, the content that is lost can be rebuilt from the five remaining drives. Aside such a 5+1 scheme, many others are possible, where even multiple drives can fail simultaneously and yet the full content can be rebuilt: there is a continuum in the trade-off between footprint and robustness.

More recently, the same class of algorithms that is used for RAID has been applied to the world of object storage: they are commonly called Erasure Codes. The concept is similar: imagine an object to be stored in a cluster. Now, rather than storing and replicating it wholly we will cut the incoming stream into (say) six segments in a 5:1 scheme each with parity information. Similar to the RAID mechanism above, any missing segment out of the six can be rebuilt from the five remaining ones, hence the 1. This provides a mechanism to survive a failed disk drive without making a full replica: the footprint overhead is just 20 percent here rather than 100 percent with comparable data durability.

Beyond this “5+1” scheme, many more Erasure Coding (EC) schemes are possible. They can survive as many disk failures as their number of parity segments: a 10+6 scheme can survive six simultaneous segment failures without data loss, for instance. Here the overhead will be 60 percent ((10+6)/10).

Erasure coding comes with trade-offs

The underlying objective is clear: provide protection against failure at lower footprint cost. However, as usual, there is no such thing as a ‘free lunch.’ There are trade-offs to be considered when compared to replication. The key is to have the freedom to choose the best protection for each particular use case.

When chopping up objects to store the resulting segments across a number of nodes, the “physical” object count of the underlying storage system is multiplied (e.g., for a 10:6 scheme, it’s multiplied by 16). Not all competing object storage systems handle high object count well. It is also clear that the granularity (i.e., minimum file size) of the underlying file system or object storage system will play a role in suggesting how small an object can be to be economically stored using erasure coding. It doesn’t really make sense from an efficiency perspective to store, say, a 50K object using a 10:6 erasure coding scheme if there is a file system at the core of a storage system. This is because file systems still segment files into blocks with minimum block sizes. A common threshold for this block size for a Linux file system is 32K so the resulting storage needed for a 50K file using a 10:6 erasure coding scheme would be would be 512K (32K * 16 segments) or a 10X increase in footprint. As we will see replication is a much better approach for small files.

Replication:

The simplest form of protective data redundancy is replication, with one or more additional copies of an “original” object being created and maintained to be available if that original somehow gets damaged or lost. In spite of the recent hype around erasure coding, we will see that there still are substantial use case areas where replication clearly is the superior option. For the sake of the example, imagine a cluster of a 100 CPUs with one disk drive each, and 50 million objects with 2 replicas each, 100 million objects grand total. When we speak of replicas in this context, we mean an instance – any instance – of an object; there is no notion of “original” or “copy.” Two replicas equal a grand total of two instances of a given object, somewhere in the cluster, on two randomly different nodes. When an object loss is detected a recovery cycle begins. Data loss only occurs if both replicas are lost which is why it is important to store replicas on different nodes and if possible different locations. It is also important to have efficient and rapid recovery cycles; you want to ensure that your objects are quickly replicated in case of an overlapping recovery cycle which may lead to data loss. If there are three replicas per object, three overlapping recovery cycles (a very low probability event) will be required to cause any data loss.

Replication and Erasure combined is the answer

As so often in IT, there is no single perfect solution to a wide array of use cases. In object storage applications, cluster sizes run the gamut between just a few nodes built into a medical imaging modality to thousands of nodes spanning multiple datacenters, with object sizes ranging between just a few kilobytes for an email message and hundreds of gigabytes for seismic activity data sets. If we want to fulfill the economic and manageability promises of the single unified storage, we need technology that is fully capable of seamlessly adapting between those use cases.

To deal with the velocity and variability of unstructured information, organizations are increasingly turning to cloud storage infrastructures to manage their data in a cost-effective, just-in-time manner, while others may need the robustness of big data repositories to handle the volume that today’s boundless storage requires. A combination of both replication and erasure coding, combined into a singular object storage solution, will provide the best option to access and analyze data regardless of object size, object count or storage amount while ensuring data integrity aligned with business value. Traditional file systems simply cannot provide the ease of management and accessibility required for cloud storage, nor will they provide the massive scalability and footprint efficiency required for big data repositories. The future of both cloud storage and big data remain firmly entrenched in an object storage solution that incorporates both replication and erasure coding into its architecture to overcome the limitations of either one technology.

To see an in depth paper on “Replication and Erasure Coding Explained,” visit http://www.caringo.com/.

About the Author

Known as the father of the Content Addressing concept, Paul Carpentier invented the patent pending scalable and upgradeable security that is at the heart of Caringo. He was the architect of SequeLink – the first client/server middleware product to connect heterogeneous front ends running over multiple networks to multiple databases on the server side. Paul founded Wave Research and conceived FileWave, the first fully automated, model-driven software distribution and management system. At FilePool, he invented the technology that created the Content Addressed Storage industry. FilePool, was sold to EMC who turned CAS into a multi-billion dollar marketplace. Caringo CAStor, based on two of Mr. Carpentier’s six patents promises to revolutionize the data storage business in much the same manner that CAS created a whole new marketplace.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This