The Week in HPC Research

By Tiffany Trader

April 11, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. Here’s another diverse set of items, including an evaluation of multi-stage programming with Terra; a look at parallel I/O for multicore architectures; a survey of on-chip monitoring approaches used in multicore SoCs; a review of grid security protocols and architectures; and a discussion of the finer distinctions between HPC and cloud.

Multi-Stage Programming with Terra

A team of computer scientists from Stanford and Purdue Universities is investigating a new approach to multi-stage programming. Motivated by the increasing demand for high-performance power-efficient applications and seeking to address the limitations of current generative programming techniques, the team developed a method that combines the high-level scripting language, Lua, with the low-level language, Terra.

According to the authors, it’s a beneficial arrangement that enables streamlined metaprogramming – a result of Lua and Terra sharing the same lexical environment – and enhanced performance afforded by Terra’s ability to execute independently of Lua’s runtime.

In a recent paper, the researchers describe the process of reimplementing multi-language systems within Terra, which they then compare with existing methods. They purposefully choose applications that are difficult to implement with a single language programming paradigm. Detailing the results of one experiment, they note that their Terra-based autotuner for BLAS routines performs within 20 percent of the ATLAS routine. The result reflects well on Terra, and they chalk up the discrepency to a register spill in Terra’s generated code that does not occur in ATLAS’s generated assembly. In the final analysis, they are satisfied that the approach leads to implementations that are simpler to engineer and achieve higher performance.

Going forward, the researchers have big plans for Terra, including integration with coprocessors, namely NVIDIA GPUs and Intel’s MIC architecture, which will provide additional performance for parallelized code.

Next >> Parallel I/O for Multicore Architectures

Parallel I/O for Multicore Architectures

A group of researchers from the Supercomputing Center at Korea Institute of Science and Technology Information (KISTI) take on the subject of parallel I/O in a new research paper. The authors observe that with the increase in the average number of HPC system nodes, parallel I/O is more relevant than ever and so is collective I/O, the specialized parallel I/O that provides the function of single-file based parallel I/O. Furthermore, the move toward multicore computational nodes means that the roles of I/O aggregators, involved in engaging the communications and I/O operations, need to be re-evaluated.

The researchers note that there is already a body of work that focuses on improvement of the performance of collective I/O, but they state it is difficult to find a study regarding the assignment scheme for I/O aggregators in multicore architectures.

They write:

It was discovered that the communication costs in collective I/O differed according to the placement of the I/O aggregators, where each node had multiple I/O aggregators. The performance with the two processor affinity rules was measured and the results demonstrated that the distributed affinity rule used to locate the I/O aggregators in different sockets was appropriate for collective I/O. Because there may be some applications that cannot use the distributed affinity rule, the collective I/O scheme was modified in order to guarantee the appropriate placement of the I/O aggregators for the accumulated affinity rule.

The authors go on to detail an approach that demonstrates performance improvements in the face of complicated architectures. Their paper, “An Efficient I/O Aggregator Assignment Scheme for Multi-Core Cluster Systems,” is published in IEICE Transactions on Information and Systems by the University of Oxford Press.

Next >> On-Chip Monitoring for Multicore SoCs

On-chip monitoring of multicore systems-on-chip

A new paper put out by a Greek research duo documents the different on-chip monitoring approaches used in multicore systems-on-chip.

Their work stems from the premise that “billion transistor systems-on-chip increasingly require dynamic management of their hardware components and careful coordination of the tasks that they carry out.”

These diverse real-time monitoring functions are enabled via the collection of important system metrics: the throughput of processing elements, communication latency, and resource utilization at the application level.

“The online evaluation of these metrics can result in localized or global decisions that attempt to improve aspects of system behavior, system performance, quality-of-service, power and thermal effects under nominal conditions,” write the authors.

By providing a comprehensive survey of the available monitoring tactics the researchers aim to increase the understanding of architectural mechanisms that can be used in systems, which they believe will support further innovations in the development of adaptive and intelligent systems-on-chip.

The researchers are affiliated with the Technical University of Crete, in Chania, Greece, and their paper appears in ACM Transactions on Design Automation of Electronic Systems (TODAES) TODAES.

Next >> Revisiting Grid Security

Revisiting Grid Security

Grid computing may have fallen out of fashion as a marketing term, but the distributed computing technologies that helped set the stage for today’s cloud are very much alive and well. And as with cloud or any IT system, security is a top concern for the grid community. It’s also the subject of recent paper from Malaysian researchers Saiful Adli Ismail and Zailani Mohamed Sidek. The duo provide a comprehensive review of current security issues in the grid computing arena.

In addition to presenting an overview of grid computing security, the paper also details types of grid security and depicts a prototypical architecture for grid computing security. The computer scientists wrote the paper with an eye toward shaping “future research in encryption, access controls, and other security solutions for the grid computing environment.”

As with most types of cloud architectures, grid represents a shared environment and as such it is necessary for the various parties to work together to overcome any risks, gaps and vulnerabilities that could jeopardize grid security.

The authors highlight and describe six main areas of grid security requirements: authentication, authorization, confidentiality, integrity, no repudiation and management. They also emphasize three essential services – authentication, authorization and encryption – without which grids are left unsecured and open to man-in-the-middle attacks.

While this paper mainly serves as an overview of best practices for grid security, the authors are also hoping to inspire other researchers to make contributions that advance grid security.

Next >> Research in the Cloud

Research in the Cloud, Australian-style

A new paper came out this week detailing the activities of the NeCTAR Research Cloud, which has been running at the University of Melbourne since February 2012. During that time, the system has attracted more than 1,650 users and supported more than 110 projects.

In addition to offering a window into a successful “research cloud,” the authors make some interesting observations regarding the distinctions between HPC and cloud computing that are worth noting.

“HPC can be seen as the forerunner to cloud computing,” they write. “Rather than utilising local desktop computation resources, HPC allowed users to take advantage of available compute cycles on a massive remote resource. Cloud computing achieves a similar outcome. Both HPC systems and cloud computing are based on clusters of computers interconnected by some high-speed network, often managed by a dedicated additional (head) node.”

This isn’t the usual definition of (enterprise-leaning) cloud, which tends to run on general-purpose, vanilla infrastructure. Also, what makes it a cloud and not remote HPC or HPC as a Service?

Let’s go back to the document for the answer:

“Cloud computing and HPC differ in that HPC systems are predominantly task based whereas cloud computing is more often characterized as Infrastructure as a service (IaaS). On HPC systems, users submit tasks to a queuing system, which then allocates resources to the task as they become available. User tasks all run in the same software environment. Cloud computing on the other hand allows the users to develop VMs with their chosen software environment, which they then submit to an allocation system that allocates them the resources they need.”

The statement seems to be making reference to a heterogenous subset of resources which are provisioned on demand via the use of virtual machines. Fair enough. But there are still further distinctions to follow:

“The major differences are that on HPC systems, users are guaranteed exclusive access to the allocated resources for a limited time and sharing is accomplished by having tasks wait on a queue until resources become available, while in the Cloud resources are shared by being oversubscribed, but VMs are allowed to be persistent. This leads to the two systems having different best use situations.

“HPC, as the name implies, is most suited to well defined and bounded computational problems, whilst Cloud is most suited to ongoing continuous loads. Cloud systems also have the capability to add VMs in a dynamic fashion to cope with varying demand in a way that HPC systems find difficult, and this makes them suited to many collaborative activities where demand is hard to predict (Cohen et al. 2013; Suresh, Ezhilchelvan, and Watson 2013).”

The paper was written by Bernard Meade in collaboration with co-authors Steven Manos, Richard Sinnott, Andy Tseng and Dirk van der Knijff, all from the University of Melbourne, and Christopher Fluke from Swinburne University of Technology. It was presented this week at THETA Australasia: the Higher Education Technology Agenda in Hobart, Tasmania.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This