The Week in HPC Research

By Tiffany Trader

April 11, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. Here’s another diverse set of items, including an evaluation of multi-stage programming with Terra; a look at parallel I/O for multicore architectures; a survey of on-chip monitoring approaches used in multicore SoCs; a review of grid security protocols and architectures; and a discussion of the finer distinctions between HPC and cloud.

Multi-Stage Programming with Terra

A team of computer scientists from Stanford and Purdue Universities is investigating a new approach to multi-stage programming. Motivated by the increasing demand for high-performance power-efficient applications and seeking to address the limitations of current generative programming techniques, the team developed a method that combines the high-level scripting language, Lua, with the low-level language, Terra.

According to the authors, it’s a beneficial arrangement that enables streamlined metaprogramming – a result of Lua and Terra sharing the same lexical environment – and enhanced performance afforded by Terra’s ability to execute independently of Lua’s runtime.

In a recent paper, the researchers describe the process of reimplementing multi-language systems within Terra, which they then compare with existing methods. They purposefully choose applications that are difficult to implement with a single language programming paradigm. Detailing the results of one experiment, they note that their Terra-based autotuner for BLAS routines performs within 20 percent of the ATLAS routine. The result reflects well on Terra, and they chalk up the discrepency to a register spill in Terra’s generated code that does not occur in ATLAS’s generated assembly. In the final analysis, they are satisfied that the approach leads to implementations that are simpler to engineer and achieve higher performance.

Going forward, the researchers have big plans for Terra, including integration with coprocessors, namely NVIDIA GPUs and Intel’s MIC architecture, which will provide additional performance for parallelized code.

Next >> Parallel I/O for Multicore Architectures

Parallel I/O for Multicore Architectures

A group of researchers from the Supercomputing Center at Korea Institute of Science and Technology Information (KISTI) take on the subject of parallel I/O in a new research paper. The authors observe that with the increase in the average number of HPC system nodes, parallel I/O is more relevant than ever and so is collective I/O, the specialized parallel I/O that provides the function of single-file based parallel I/O. Furthermore, the move toward multicore computational nodes means that the roles of I/O aggregators, involved in engaging the communications and I/O operations, need to be re-evaluated.

The researchers note that there is already a body of work that focuses on improvement of the performance of collective I/O, but they state it is difficult to find a study regarding the assignment scheme for I/O aggregators in multicore architectures.

They write:

It was discovered that the communication costs in collective I/O differed according to the placement of the I/O aggregators, where each node had multiple I/O aggregators. The performance with the two processor affinity rules was measured and the results demonstrated that the distributed affinity rule used to locate the I/O aggregators in different sockets was appropriate for collective I/O. Because there may be some applications that cannot use the distributed affinity rule, the collective I/O scheme was modified in order to guarantee the appropriate placement of the I/O aggregators for the accumulated affinity rule.

The authors go on to detail an approach that demonstrates performance improvements in the face of complicated architectures. Their paper, “An Efficient I/O Aggregator Assignment Scheme for Multi-Core Cluster Systems,” is published in IEICE Transactions on Information and Systems by the University of Oxford Press.

Next >> On-Chip Monitoring for Multicore SoCs

On-chip monitoring of multicore systems-on-chip

A new paper put out by a Greek research duo documents the different on-chip monitoring approaches used in multicore systems-on-chip.

Their work stems from the premise that “billion transistor systems-on-chip increasingly require dynamic management of their hardware components and careful coordination of the tasks that they carry out.”

These diverse real-time monitoring functions are enabled via the collection of important system metrics: the throughput of processing elements, communication latency, and resource utilization at the application level.

“The online evaluation of these metrics can result in localized or global decisions that attempt to improve aspects of system behavior, system performance, quality-of-service, power and thermal effects under nominal conditions,” write the authors.

By providing a comprehensive survey of the available monitoring tactics the researchers aim to increase the understanding of architectural mechanisms that can be used in systems, which they believe will support further innovations in the development of adaptive and intelligent systems-on-chip.

The researchers are affiliated with the Technical University of Crete, in Chania, Greece, and their paper appears in ACM Transactions on Design Automation of Electronic Systems (TODAES) TODAES.

Next >> Revisiting Grid Security

Revisiting Grid Security

Grid computing may have fallen out of fashion as a marketing term, but the distributed computing technologies that helped set the stage for today’s cloud are very much alive and well. And as with cloud or any IT system, security is a top concern for the grid community. It’s also the subject of recent paper from Malaysian researchers Saiful Adli Ismail and Zailani Mohamed Sidek. The duo provide a comprehensive review of current security issues in the grid computing arena.

In addition to presenting an overview of grid computing security, the paper also details types of grid security and depicts a prototypical architecture for grid computing security. The computer scientists wrote the paper with an eye toward shaping “future research in encryption, access controls, and other security solutions for the grid computing environment.”

As with most types of cloud architectures, grid represents a shared environment and as such it is necessary for the various parties to work together to overcome any risks, gaps and vulnerabilities that could jeopardize grid security.

The authors highlight and describe six main areas of grid security requirements: authentication, authorization, confidentiality, integrity, no repudiation and management. They also emphasize three essential services – authentication, authorization and encryption – without which grids are left unsecured and open to man-in-the-middle attacks.

While this paper mainly serves as an overview of best practices for grid security, the authors are also hoping to inspire other researchers to make contributions that advance grid security.

Next >> Research in the Cloud

Research in the Cloud, Australian-style

A new paper came out this week detailing the activities of the NeCTAR Research Cloud, which has been running at the University of Melbourne since February 2012. During that time, the system has attracted more than 1,650 users and supported more than 110 projects.

In addition to offering a window into a successful “research cloud,” the authors make some interesting observations regarding the distinctions between HPC and cloud computing that are worth noting.

“HPC can be seen as the forerunner to cloud computing,” they write. “Rather than utilising local desktop computation resources, HPC allowed users to take advantage of available compute cycles on a massive remote resource. Cloud computing achieves a similar outcome. Both HPC systems and cloud computing are based on clusters of computers interconnected by some high-speed network, often managed by a dedicated additional (head) node.”

This isn’t the usual definition of (enterprise-leaning) cloud, which tends to run on general-purpose, vanilla infrastructure. Also, what makes it a cloud and not remote HPC or HPC as a Service?

Let’s go back to the document for the answer:

“Cloud computing and HPC differ in that HPC systems are predominantly task based whereas cloud computing is more often characterized as Infrastructure as a service (IaaS). On HPC systems, users submit tasks to a queuing system, which then allocates resources to the task as they become available. User tasks all run in the same software environment. Cloud computing on the other hand allows the users to develop VMs with their chosen software environment, which they then submit to an allocation system that allocates them the resources they need.”

The statement seems to be making reference to a heterogenous subset of resources which are provisioned on demand via the use of virtual machines. Fair enough. But there are still further distinctions to follow:

“The major differences are that on HPC systems, users are guaranteed exclusive access to the allocated resources for a limited time and sharing is accomplished by having tasks wait on a queue until resources become available, while in the Cloud resources are shared by being oversubscribed, but VMs are allowed to be persistent. This leads to the two systems having different best use situations.

“HPC, as the name implies, is most suited to well defined and bounded computational problems, whilst Cloud is most suited to ongoing continuous loads. Cloud systems also have the capability to add VMs in a dynamic fashion to cope with varying demand in a way that HPC systems find difficult, and this makes them suited to many collaborative activities where demand is hard to predict (Cohen et al. 2013; Suresh, Ezhilchelvan, and Watson 2013).”

The paper was written by Bernard Meade in collaboration with co-authors Steven Manos, Richard Sinnott, Andy Tseng and Dirk van der Knijff, all from the University of Melbourne, and Christopher Fluke from Swinburne University of Technology. It was presented this week at THETA Australasia: the Higher Education Technology Agenda in Hobart, Tasmania.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This