The Week in HPC Research

By Tiffany Trader

April 11, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. Here’s another diverse set of items, including an evaluation of multi-stage programming with Terra; a look at parallel I/O for multicore architectures; a survey of on-chip monitoring approaches used in multicore SoCs; a review of grid security protocols and architectures; and a discussion of the finer distinctions between HPC and cloud.

Multi-Stage Programming with Terra

A team of computer scientists from Stanford and Purdue Universities is investigating a new approach to multi-stage programming. Motivated by the increasing demand for high-performance power-efficient applications and seeking to address the limitations of current generative programming techniques, the team developed a method that combines the high-level scripting language, Lua, with the low-level language, Terra.

According to the authors, it’s a beneficial arrangement that enables streamlined metaprogramming – a result of Lua and Terra sharing the same lexical environment – and enhanced performance afforded by Terra’s ability to execute independently of Lua’s runtime.

In a recent paper, the researchers describe the process of reimplementing multi-language systems within Terra, which they then compare with existing methods. They purposefully choose applications that are difficult to implement with a single language programming paradigm. Detailing the results of one experiment, they note that their Terra-based autotuner for BLAS routines performs within 20 percent of the ATLAS routine. The result reflects well on Terra, and they chalk up the discrepency to a register spill in Terra’s generated code that does not occur in ATLAS’s generated assembly. In the final analysis, they are satisfied that the approach leads to implementations that are simpler to engineer and achieve higher performance.

Going forward, the researchers have big plans for Terra, including integration with coprocessors, namely NVIDIA GPUs and Intel’s MIC architecture, which will provide additional performance for parallelized code.

Next >> Parallel I/O for Multicore Architectures

Parallel I/O for Multicore Architectures

A group of researchers from the Supercomputing Center at Korea Institute of Science and Technology Information (KISTI) take on the subject of parallel I/O in a new research paper. The authors observe that with the increase in the average number of HPC system nodes, parallel I/O is more relevant than ever and so is collective I/O, the specialized parallel I/O that provides the function of single-file based parallel I/O. Furthermore, the move toward multicore computational nodes means that the roles of I/O aggregators, involved in engaging the communications and I/O operations, need to be re-evaluated.

The researchers note that there is already a body of work that focuses on improvement of the performance of collective I/O, but they state it is difficult to find a study regarding the assignment scheme for I/O aggregators in multicore architectures.

They write:

It was discovered that the communication costs in collective I/O differed according to the placement of the I/O aggregators, where each node had multiple I/O aggregators. The performance with the two processor affinity rules was measured and the results demonstrated that the distributed affinity rule used to locate the I/O aggregators in different sockets was appropriate for collective I/O. Because there may be some applications that cannot use the distributed affinity rule, the collective I/O scheme was modified in order to guarantee the appropriate placement of the I/O aggregators for the accumulated affinity rule.

The authors go on to detail an approach that demonstrates performance improvements in the face of complicated architectures. Their paper, “An Efficient I/O Aggregator Assignment Scheme for Multi-Core Cluster Systems,” is published in IEICE Transactions on Information and Systems by the University of Oxford Press.

Next >> On-Chip Monitoring for Multicore SoCs

On-chip monitoring of multicore systems-on-chip

A new paper put out by a Greek research duo documents the different on-chip monitoring approaches used in multicore systems-on-chip.

Their work stems from the premise that “billion transistor systems-on-chip increasingly require dynamic management of their hardware components and careful coordination of the tasks that they carry out.”

These diverse real-time monitoring functions are enabled via the collection of important system metrics: the throughput of processing elements, communication latency, and resource utilization at the application level.

“The online evaluation of these metrics can result in localized or global decisions that attempt to improve aspects of system behavior, system performance, quality-of-service, power and thermal effects under nominal conditions,” write the authors.

By providing a comprehensive survey of the available monitoring tactics the researchers aim to increase the understanding of architectural mechanisms that can be used in systems, which they believe will support further innovations in the development of adaptive and intelligent systems-on-chip.

The researchers are affiliated with the Technical University of Crete, in Chania, Greece, and their paper appears in ACM Transactions on Design Automation of Electronic Systems (TODAES) TODAES.

Next >> Revisiting Grid Security

Revisiting Grid Security

Grid computing may have fallen out of fashion as a marketing term, but the distributed computing technologies that helped set the stage for today’s cloud are very much alive and well. And as with cloud or any IT system, security is a top concern for the grid community. It’s also the subject of recent paper from Malaysian researchers Saiful Adli Ismail and Zailani Mohamed Sidek. The duo provide a comprehensive review of current security issues in the grid computing arena.

In addition to presenting an overview of grid computing security, the paper also details types of grid security and depicts a prototypical architecture for grid computing security. The computer scientists wrote the paper with an eye toward shaping “future research in encryption, access controls, and other security solutions for the grid computing environment.”

As with most types of cloud architectures, grid represents a shared environment and as such it is necessary for the various parties to work together to overcome any risks, gaps and vulnerabilities that could jeopardize grid security.

The authors highlight and describe six main areas of grid security requirements: authentication, authorization, confidentiality, integrity, no repudiation and management. They also emphasize three essential services – authentication, authorization and encryption – without which grids are left unsecured and open to man-in-the-middle attacks.

While this paper mainly serves as an overview of best practices for grid security, the authors are also hoping to inspire other researchers to make contributions that advance grid security.

Next >> Research in the Cloud

Research in the Cloud, Australian-style

A new paper came out this week detailing the activities of the NeCTAR Research Cloud, which has been running at the University of Melbourne since February 2012. During that time, the system has attracted more than 1,650 users and supported more than 110 projects.

In addition to offering a window into a successful “research cloud,” the authors make some interesting observations regarding the distinctions between HPC and cloud computing that are worth noting.

“HPC can be seen as the forerunner to cloud computing,” they write. “Rather than utilising local desktop computation resources, HPC allowed users to take advantage of available compute cycles on a massive remote resource. Cloud computing achieves a similar outcome. Both HPC systems and cloud computing are based on clusters of computers interconnected by some high-speed network, often managed by a dedicated additional (head) node.”

This isn’t the usual definition of (enterprise-leaning) cloud, which tends to run on general-purpose, vanilla infrastructure. Also, what makes it a cloud and not remote HPC or HPC as a Service?

Let’s go back to the document for the answer:

“Cloud computing and HPC differ in that HPC systems are predominantly task based whereas cloud computing is more often characterized as Infrastructure as a service (IaaS). On HPC systems, users submit tasks to a queuing system, which then allocates resources to the task as they become available. User tasks all run in the same software environment. Cloud computing on the other hand allows the users to develop VMs with their chosen software environment, which they then submit to an allocation system that allocates them the resources they need.”

The statement seems to be making reference to a heterogenous subset of resources which are provisioned on demand via the use of virtual machines. Fair enough. But there are still further distinctions to follow:

“The major differences are that on HPC systems, users are guaranteed exclusive access to the allocated resources for a limited time and sharing is accomplished by having tasks wait on a queue until resources become available, while in the Cloud resources are shared by being oversubscribed, but VMs are allowed to be persistent. This leads to the two systems having different best use situations.

“HPC, as the name implies, is most suited to well defined and bounded computational problems, whilst Cloud is most suited to ongoing continuous loads. Cloud systems also have the capability to add VMs in a dynamic fashion to cope with varying demand in a way that HPC systems find difficult, and this makes them suited to many collaborative activities where demand is hard to predict (Cohen et al. 2013; Suresh, Ezhilchelvan, and Watson 2013).”

The paper was written by Bernard Meade in collaboration with co-authors Steven Manos, Richard Sinnott, Andy Tseng and Dirk van der Knijff, all from the University of Melbourne, and Christopher Fluke from Swinburne University of Technology. It was presented this week at THETA Australasia: the Higher Education Technology Agenda in Hobart, Tasmania.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This