HPC in the Cloud Research Roundup

By Tiffany Trader

April 12, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. In this week’s assortment, researchers tackle the distinctions between HPC and research clouds, present a way to use fuzzy logic to make clouds more efficient, and provide a review of grid security best practices.

Research in the Cloud, Australian-style

A new paper came out this week detailing the activities of the NeCTAR Research Cloud, which has been running at the University of Melbourne since February 2012. During that time, the system has attracted more than 1,650 users and supported more than 110 projects.

In addition to offering a window into a successful “research cloud,” the authors make some interesting observations regarding the distinctions between HPC and cloud computing that are worth noting.

“HPC can be seen as the forerunner to cloud computing,” they write. “Rather than utilising local desktop computation resources, HPC allowed users to take advantage of available compute cycles on a massive remote resource. Cloud computing achieves a similar outcome. Both HPC systems and cloud computing are based on clusters of computers interconnected by some high-speed network, often managed by a dedicated additional (head) node.”

This isn’t the usual definition of (enterprise-leaning) cloud, which tends to run on general-purpose, vanilla infrastructure. Also, what makes it a cloud and not remote HPC or HPC as a Service?

Let’s go back to the document for the answer:

“Cloud computing and HPC differ in that HPC systems are predominantly task based whereas cloud computing is more often characterized as Infrastructure as a service (IaaS). On HPC systems, users submit tasks to a queuing system, which then allocates resources to the task as they become available. User tasks all run in the same software environment. Cloud computing on the other hand allows the users to develop VMs with their chosen software environment, which they then submit to an allocation system that allocates them the resources they need.”

The statement seems to be making reference to a heterogenous subset of resources which are provisioned on demand via the use of virtual machines. Fair enough. But there are still further distinctions to follow:

“The major differences are that on HPC systems, users are guaranteed exclusive access to the allocated resources for a limited time and sharing is accomplished by having tasks wait on a queue until resources become available, while in the Cloud resources are shared by being oversubscribed, but VMs are allowed to be persistent. This leads to the two systems having different best use situations.

“HPC, as the name implies, is most suited to well defined and bounded computational problems, whilst Cloud is most suited to ongoing continuous loads. Cloud systems also have the capability to add VMs in a dynamic fashion to cope with varying demand in a way that HPC systems find difficult, and this makes them suited to many collaborative activities where demand is hard to predict (Cohen et al. 2013; Suresh, Ezhilchelvan, and Watson 2013).”

The paper was written by Bernard Meade in collaboration with co-authors Steven Manos, Richard Sinnott, Andy Tseng and Dirk van der Knijff, all from the University of Melbourne, and Christopher Fluke from Swinburne University of Technology. It was presented this week at THETA Australasia: the Higher Education Technology Agenda in Hobart, Tasmania.

Using Fuzzy Logic to Improve Datacenter Efficiency

When you hear cloud computing, what is the first thing that comes to mind? Yes, there are many types of cloud and a fair amount of debate about the term, but the basic idea is a shared pool of resources. This means that management and monitoring software are necessary to ensure smooth operation. The importance of datacenter management to cloud computing was highlighted in a recent journal article by M. Jaiganesh and A. Vincent Antony Kumar.

These computer scientists with the Department of Information Technology, PSNA College of Engineering and Technology in India propose an innovative approach to optimizing the efficiency of the datacenter in cloud computing with a focus on three factors: bandwidth, memory, and central processing unit (CPU) cycle. What makes their work different from the other software out there is their reliance on so-called fuzzy logic.

They write:

We constructed a fuzzy expert system model to obtain maximum Data Center Load Efficiency (DCLE) in cloud computing environments. The advantage of the proposed system lies in DCLE computing. While computing, it allows regular evaluation of services to any number of clients.

The authors assert that cloud service providers will need to double-down on datacenter management if they are to continue to meet the needs of next generation computing.
Their working definition of cloud is “the art of managing tasks and applications by altering the software, platform, and infrastructure and by organizing third party datacenters known as Cloud Service Providers (CSP) such as Yahoo!, Amazon, Google, and VMware.”

After the researchers determine the datacenter load efficiency using fuzzy modeling, they discuss their results. The work is highly technical, but in the final analysis, they believe that DCLE proved to be a valuable method for determining overall system utilization and provides a useful assessment of the system efficiency.

Revisiting Grid Security

Grid computing may have fallen out of fashion as a marketing term, but the distributed computing technologies that helped set the stage for today’s cloud are very much alive and well. And as with cloud or any IT system, security is a top concern for the grid community. It’s also the subject of recent paper from Malaysian researchers Saiful Adli Ismail and Zailani Mohamed Sidek. The duo provide a comprehensive review of current security issues in the grid computing arena.

In addition to presenting an overview of grid computing security, the paper also details types of grid security and depicts a prototypical architecture for grid computing security. The computer scientists wrote the paper with an eye toward shaping “future research in encryption, access controls, and other security solutions for the grid computing environment.”

As with most types of cloud architectures, grid represents a shared environment and as such it is necessary for the various parties to work together to overcome any risks, gaps and vulnerabilities that could jeopardize grid security.

The authors highlight and describe six main areas of grid security requirements: authentication, authorization, confidentiality, integrity, no repudiation and management. They also emphasize three essential services – authentication, authorization and encryption – without which grids are left unsecured and open to man-in-the-middle attacks.

While this paper mainly serves as an overview of best practices for grid security, the authors are also hoping to inspire other researchers to make contributions that advance grid security.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This