Future Challenges of Large-Scale Computing

By Nicole Hemsoth

April 15, 2013

Now in its 28th year, the International Supercomputing Conference, ISC’13, is fast approaching. On Monday, June 17, Bill Dally, chief scientist at NVIDIA and senior vice president of NVIDIA Research, will deliver the opening keynote, titled “Future Challenges of Large-Scale Computing.”

Dally will address the multiple advances that will be necessary in order for the community to achieve the potential of HPC and data analytics going forward. The thrust of his talk will be on the challenges around power, programmability, and scalability, and most notably the role that energy-efficiency will play in determining system performance.

ISC’13 will be held from June 16-20, 2013, at the Congress Center Leipzig (CCL) in Leipzig, Germany.

In this Q&A Mr. Dally shares his views on where HPC is headed in the context of such important topics as heterogenous computing, the memory wall, government belt-tightening, and more…

HPCwire: Are different types of workloads, such as big data, HPC and Web 2.0, beginning to demand different types of processors? Will server processors diversify over the next five to ten years, or will they converge?

Bill Dally: HPC, Web servers, and big data all have similar requirement for processors. Within these applications there are program segments that are limited by single-thread performance and other segments that are limited by throughput. To meet this need, there will be a convergence on heterogeneous multicore processors where each “socket” will contain a small number of cores optimized for latency (like today’s CPU cores) and many more cores optimized for throughput (like today’s GPU cores).

HPCwire: The increase in processor performance seems to be outpacing memory technology. What can be done about the memory wall?

Dally: There are three aspects of memory relevant here: bandwidth, latency and capacity. To address the slow scaling of memory bandwidth we plan to move to memory technologies that involve placing memory dice on the same package as the processor chip and connecting them with very high-bandwidth, low-energy links. This on-package memory technology will enable us to scale memory bandwidth with processor performance holding the Byte/FLOP ratio roughly constant for the next few generations.

Memory latency is remaining roughly constant as processor performance increases. We deal with this by increasing parallelism to hide the latency. With adequate parallelism we can keep the memory pipeline full – using all of the available bandwidth.

Memory capacity is largely a matter of cost. The challenge here is that high-bandwidth memories, like on-package or stacked DRAM, cost significantly more than commodity memory. Thus, for cost-sensitive applications we are likely to see a two-tiered memory system with a moderate capacity, high-bandwidth on-package memory and a high-capacity commodity memory. A non-volatile memory technology like flash or phase-change memory could have a place in such a hierarchy as well.

HPCwire: How important will 3D stacked chip technology be to processors and memory? When do you think we’ll see the first commercial products?

Dally: Placing memory on-package will be critical to scale bandwidth. Stacking technology is important to extend the capacity of this high-bandwidth memory.

Stacked memory is shipping today. However, most of this today uses wire bonds, not through-silicon vias. At the 2013 GPU Technology Conference (GTC) this past March, we announced that we expect to introduce stacked memories with our Volta architecture-based generation of GPUs – in about 2016.

HPCwire: Government austerity restrictions look as though there could be pressure to reduce investments in exascale computing, especially in the US. How capable is industry of driving these initiatives by itself?

Dally: Industry will continue to move forward on its own on exascale projects, however progress will be much slower than with government assistance.

It is disappointing that government priorities are such that investment in computing innovation is being scaled back. At the same time, other nations like China are investing heavily in computing. Even the EU with all of its economic problems is moving forward with their exascale program. With reduced investment, the US runs a grave risk of giving up its leadership in computing.

HPCwire: With current technology, it seems as though exascale computing would require so much energy as to render it impractical. Will we see new breakthrough technologies to sufficiently reduce power consumption to make exascale practical and affordable?

Dally: Improving energy efficiency to reach the goal of a sustained exaflops on a real application in 20MW is a significant challenge. However, I am optimistic that we can meet this challenge. There are many emerging circuit, architecture and software technologies that have the potential to dramatically improve the energy efficiency of one or more parts of the system. For example, at NVIDIA we have recently developed a new signaling technology that reduces the energy required by communication by more than an order of magnitude, and we have developed an SRAM technology that permits operation at dramatically lower voltages – and hence lower power. It won’t be a single breakthrough technology that will get us to the exascale energy goal, it will be multiple breakthroughs – at least one in each of the multiple areas that require improvement – processor, communication, memory, etc. We have a number of research projects that are targeted at these different areas. If a sufficient number of these projects have successful outcomes, we will meet the goal.

These improvements, however, depend on research, which in turn will be slowed considerably without government funding.

HPCwire: What do you see as the biggest challenges to reaching exascale?

Dally: Energy efficiency and programmability are the two biggest challenges.

For energy, we will need to improve from where we are with the NVIDIA-Kepler-based Titan machine at Oak Ridge National Laboratory in Tennessee, which is about 2GFLOPS/Watt (500pJ/FLOP) to 50GFLOPS/Watt (20pJ/FLOP), a 25x improvement in efficiency while at the same time increasing scale – which tends to reduce efficiency. Of this 25x improvement we expect to get only a factor of 2x to 4x from improved semiconductor process technology.

As I described before, we are optimistic that we can meet this challenge through a number of research advances in circuits, architecture and software.

Making it easy to program a machine that requires 10 billion threads to use at full capacity is also a challenge. While a backward compatible path will be provided to allow existing MPI codes to run, MPI plus C++ or Fortran is not a productive programming environment for a machine of this scale. We need to move toward higher-level programming models where the programmer describes the algorithm with all available parallelism and locality exposed, and tools automate much of the process of efficiently mapping and tuning the program to a particular target machine.

A number of research projects are underway to develop more productive programming systems – and most importantly the tools that will permit automated mapping and tuning.

Changing a large code base, however, is a very slow process, so we need to start moving on this now. As with energy efficiency, progress will be slowed without government funding.

About Bill Dally

Bill Dally is chief scientist at NVIDIA and senior vice president of NVIDIA Research, the company’s world-class research organization, which is chartered with developing the strategic technologies that will help drive the company’s future growth and success.

Dally first joined NVIDIA in 2009 after spending 12 years at Stanford University, where he was chairman of the computer science department and the Willard R. and Inez Kerr Bell Professor of Engineering. Dally and his Stanford team developed the system architecture, network architecture, signaling, routing and synchronization technology that is found in most large parallel computers today.

Dally was previously at the Massachusetts Institute of Technology from 1986 to 1997, where he and his team built the J-Machine and M-Machine, experimental parallel computer systems that pioneered the separation of mechanism from programming models and demonstrated very low overhead synchronization and communication mechanisms. From 1983 to 1986, he was at the California Institute of Technology (Caltech), where he designed the MOSSIM Simulation Engine and the Torus Routing chip, which pioneered wormhole routing and virtual-channel flow control.

Dally is a cofounder of Velio Communications and Stream Processors. He is a member of the National Academy of Engineering, a Fellow of the American Academy of Arts & Sciences, a Fellow of the IEEE and the ACM. He received the 2010 Eckert-Mauchly Award, considered the highest prize in computer architecture, as well as the 2004 IEEE Computer Society Seymour Cray Computer Engineering Award and the 2000 ACM Maurice Wilkes Award. He has published more than 200 papers, holds more than 75 issued patents and is the author of two textbooks, “Digital Systems Engineering” and “Principles and Practices of Interconnection Networks.”

Dally received a bachelor’s degree in electrical engineering from Virginia Tech, a master’s degree in electrical engineering from Stanford University and a PhD in computer science from Caltech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This