Future Challenges of Large-Scale Computing

By Nicole Hemsoth

April 15, 2013

Now in its 28th year, the International Supercomputing Conference, ISC’13, is fast approaching. On Monday, June 17, Bill Dally, chief scientist at NVIDIA and senior vice president of NVIDIA Research, will deliver the opening keynote, titled “Future Challenges of Large-Scale Computing.”

Dally will address the multiple advances that will be necessary in order for the community to achieve the potential of HPC and data analytics going forward. The thrust of his talk will be on the challenges around power, programmability, and scalability, and most notably the role that energy-efficiency will play in determining system performance.

ISC’13 will be held from June 16-20, 2013, at the Congress Center Leipzig (CCL) in Leipzig, Germany.

In this Q&A Mr. Dally shares his views on where HPC is headed in the context of such important topics as heterogenous computing, the memory wall, government belt-tightening, and more…

HPCwire: Are different types of workloads, such as big data, HPC and Web 2.0, beginning to demand different types of processors? Will server processors diversify over the next five to ten years, or will they converge?

Bill Dally: HPC, Web servers, and big data all have similar requirement for processors. Within these applications there are program segments that are limited by single-thread performance and other segments that are limited by throughput. To meet this need, there will be a convergence on heterogeneous multicore processors where each “socket” will contain a small number of cores optimized for latency (like today’s CPU cores) and many more cores optimized for throughput (like today’s GPU cores).

HPCwire: The increase in processor performance seems to be outpacing memory technology. What can be done about the memory wall?

Dally: There are three aspects of memory relevant here: bandwidth, latency and capacity. To address the slow scaling of memory bandwidth we plan to move to memory technologies that involve placing memory dice on the same package as the processor chip and connecting them with very high-bandwidth, low-energy links. This on-package memory technology will enable us to scale memory bandwidth with processor performance holding the Byte/FLOP ratio roughly constant for the next few generations.

Memory latency is remaining roughly constant as processor performance increases. We deal with this by increasing parallelism to hide the latency. With adequate parallelism we can keep the memory pipeline full – using all of the available bandwidth.

Memory capacity is largely a matter of cost. The challenge here is that high-bandwidth memories, like on-package or stacked DRAM, cost significantly more than commodity memory. Thus, for cost-sensitive applications we are likely to see a two-tiered memory system with a moderate capacity, high-bandwidth on-package memory and a high-capacity commodity memory. A non-volatile memory technology like flash or phase-change memory could have a place in such a hierarchy as well.

HPCwire: How important will 3D stacked chip technology be to processors and memory? When do you think we’ll see the first commercial products?

Dally: Placing memory on-package will be critical to scale bandwidth. Stacking technology is important to extend the capacity of this high-bandwidth memory.

Stacked memory is shipping today. However, most of this today uses wire bonds, not through-silicon vias. At the 2013 GPU Technology Conference (GTC) this past March, we announced that we expect to introduce stacked memories with our Volta architecture-based generation of GPUs – in about 2016.

HPCwire: Government austerity restrictions look as though there could be pressure to reduce investments in exascale computing, especially in the US. How capable is industry of driving these initiatives by itself?

Dally: Industry will continue to move forward on its own on exascale projects, however progress will be much slower than with government assistance.

It is disappointing that government priorities are such that investment in computing innovation is being scaled back. At the same time, other nations like China are investing heavily in computing. Even the EU with all of its economic problems is moving forward with their exascale program. With reduced investment, the US runs a grave risk of giving up its leadership in computing.

HPCwire: With current technology, it seems as though exascale computing would require so much energy as to render it impractical. Will we see new breakthrough technologies to sufficiently reduce power consumption to make exascale practical and affordable?

Dally: Improving energy efficiency to reach the goal of a sustained exaflops on a real application in 20MW is a significant challenge. However, I am optimistic that we can meet this challenge. There are many emerging circuit, architecture and software technologies that have the potential to dramatically improve the energy efficiency of one or more parts of the system. For example, at NVIDIA we have recently developed a new signaling technology that reduces the energy required by communication by more than an order of magnitude, and we have developed an SRAM technology that permits operation at dramatically lower voltages – and hence lower power. It won’t be a single breakthrough technology that will get us to the exascale energy goal, it will be multiple breakthroughs – at least one in each of the multiple areas that require improvement – processor, communication, memory, etc. We have a number of research projects that are targeted at these different areas. If a sufficient number of these projects have successful outcomes, we will meet the goal.

These improvements, however, depend on research, which in turn will be slowed considerably without government funding.

HPCwire: What do you see as the biggest challenges to reaching exascale?

Dally: Energy efficiency and programmability are the two biggest challenges.

For energy, we will need to improve from where we are with the NVIDIA-Kepler-based Titan machine at Oak Ridge National Laboratory in Tennessee, which is about 2GFLOPS/Watt (500pJ/FLOP) to 50GFLOPS/Watt (20pJ/FLOP), a 25x improvement in efficiency while at the same time increasing scale – which tends to reduce efficiency. Of this 25x improvement we expect to get only a factor of 2x to 4x from improved semiconductor process technology.

As I described before, we are optimistic that we can meet this challenge through a number of research advances in circuits, architecture and software.

Making it easy to program a machine that requires 10 billion threads to use at full capacity is also a challenge. While a backward compatible path will be provided to allow existing MPI codes to run, MPI plus C++ or Fortran is not a productive programming environment for a machine of this scale. We need to move toward higher-level programming models where the programmer describes the algorithm with all available parallelism and locality exposed, and tools automate much of the process of efficiently mapping and tuning the program to a particular target machine.

A number of research projects are underway to develop more productive programming systems – and most importantly the tools that will permit automated mapping and tuning.

Changing a large code base, however, is a very slow process, so we need to start moving on this now. As with energy efficiency, progress will be slowed without government funding.

About Bill Dally

Bill Dally is chief scientist at NVIDIA and senior vice president of NVIDIA Research, the company’s world-class research organization, which is chartered with developing the strategic technologies that will help drive the company’s future growth and success.

Dally first joined NVIDIA in 2009 after spending 12 years at Stanford University, where he was chairman of the computer science department and the Willard R. and Inez Kerr Bell Professor of Engineering. Dally and his Stanford team developed the system architecture, network architecture, signaling, routing and synchronization technology that is found in most large parallel computers today.

Dally was previously at the Massachusetts Institute of Technology from 1986 to 1997, where he and his team built the J-Machine and M-Machine, experimental parallel computer systems that pioneered the separation of mechanism from programming models and demonstrated very low overhead synchronization and communication mechanisms. From 1983 to 1986, he was at the California Institute of Technology (Caltech), where he designed the MOSSIM Simulation Engine and the Torus Routing chip, which pioneered wormhole routing and virtual-channel flow control.

Dally is a cofounder of Velio Communications and Stream Processors. He is a member of the National Academy of Engineering, a Fellow of the American Academy of Arts & Sciences, a Fellow of the IEEE and the ACM. He received the 2010 Eckert-Mauchly Award, considered the highest prize in computer architecture, as well as the 2004 IEEE Computer Society Seymour Cray Computer Engineering Award and the 2000 ACM Maurice Wilkes Award. He has published more than 200 papers, holds more than 75 issued patents and is the author of two textbooks, “Digital Systems Engineering” and “Principles and Practices of Interconnection Networks.”

Dally received a bachelor’s degree in electrical engineering from Virginia Tech, a master’s degree in electrical engineering from Stanford University and a PhD in computer science from Caltech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This