The Week in HPC Research

By Tiffany Trader

April 18, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the remarkable mechanics of bone structure; details about UCSD’s Research CyberInfrastructure (RCI) Program; an efficient approach for Monte Carlo integration on GPUs; an implementation of the lattice Boltzmann method on GPU clusters; and a cloud computing programming model that focuses on predictable performance.

Understanding Bone’s Resilience

A marvel of evolution, bone structure is remarkably strong and resilient, thanks to a combination of collagen (a soft, flexible biomolecule) and the mineral hydroxyapatite (which provides support). The exact pairing of these two substances has long evaded researchers, until now. Recently a team of scientists from MIT revealed how the two materials combine to form a structure that is “simultaneously hard, tough and slightly flexible.”

Using a supercomputer, the researchers were able to model bone structure down to the atomic level to determine its basic building blocks. What they saw was fibers of collagen, strengthened with hydroxyapatite crystals. To determine the accuracy of their model, they compared the results with prior studies of real bone. They also carried out tests on their virtual fibers with different levels of collagen versus mineral, to assess the impact of stress and strain. The tests showed that the mineral crystals were able to withstand four times more stress than the collagen matrix.

“In this arrangement of tiny hydroxyapatite grains embedded in the collagen matrix, the two materials can each contribute the best of their properties. Hydroxyapatite takes most of the forces in the material, whereas collagen takes most of the stretching,” explained Mark Buehler, the project’s lead scientist, an associate professor of civil and environmental engineering (CEE) at MIT.

Thanks to recent advances in supercomputing, modeling work that would have taken years of compute time even a few years ago was completed in just months. The research could lead to a better understanding of brittle bone diseases like osteoporosis. The next step, according to Buehler, is to recreate bone-like materials in lab.

The findings were published this week in the journal Nature Communications.

Next >> UCSD’s RCI Program

UCSD’s Research CyberInfrastructure (RCI) Program

UC San Diego established its Research CyberInfrastructure (RCI) Program in 2009 to support the scientific research activities of its campus. Earlier this month, Richard Moore, Deputy Director of the San Diego Supercomputer Center, discussed the program’s progress at the 5th Annual University of Massachusetts and New England Area Librarian e-Science Symposium in Shrewsbury, Mass.

In his address titled “UCSD’s Research CyberInfrastructure (RCI) Program: Enabling Research Thru Shared Services,” Moore presented an overview of the work the Research CyberInfrastructure (RCI) Program is doing to support researchers at the University of California San Diego.

The integrated cyberinsfrastructure includes datacenter colocation, networking, centralized storage, data curation, research computing, as well as technical expertise. Moore says the program will:

  • Increase competitiveness of UCSD researchers.
  • Realize cost efficiencies and improve service via economies of scale and shared services.
  • Preserve UCSD’s digital intellectual property.
  • Save energy/$ and effectively use datacenter capital investments (colocation)

In order to better serve its research community, UCSD undertook a survey of the campus’s principal investigators (PIs). Moore provides a peek at some of the noteworthy findings of the soon-to-be-published report.

The interviews were undertaken with a broad sample of approximately 50 representative PIs. Asked where their data was coming from, the responses showed that about 50 percent was from campus instruments, 30 percent from simulations, 20 percent from field instruments, with roughly 15 percent resulting from other external sources. The percentages reflect the number of PIs not the amount of data and since individual PIs use multiple solutions, percentages total more than 100 percent.

A significant finding was the importance of stability and long-term planning. Responses show real interest in user adoption, but only if there is a strong commitment on the campus side that includes keeping prices down for a definite period of time. The survey also reflects the need for a high performance and sustainable storage service.

Next >> Monte Carlo Integration of GPUs

Monte Carlo Integration on GPUs

Researchers Rida Assaf and Dr. E. de Doncker from the College of Engineering and Applied Sciences at Western Michigan University (WMU) are exploring an efficient approach for Monte Carlo integration on GPUs.

As Assaf explains, Monte Carlo simulations are employed in many fields, including computer-aided design (e.g., automotive safety), finite elements (using tessellations), molecular modeling, particle physics, finance (cash flow, mortgage obligations), psychology/biometrics (e.g. analysis of taste testing), and statistics.

Their experiment employed the NVIDIA Tesla M2090 GPU card, which enables 665 gigaflops peak double-precision floating point performance, or 1,331 gigaflops peak single precision. Each card has 512 CUDA cores, 6 GB of GDDR5 memory and a memory bandwidth of 177 GB/sec (with error-correcting turned off).

The team leveraged the GPUs for several DICE functions, often used in nuclear physics for modeling the behavior of particle interactions. They found that the program achieved speedups of up to 181 compared to sequential execution, tested on different functions.

In the future, the researchers plan to take on multicore and distributed computations using the cluster at the High Performance Computational Science Laboratory (HPCS), Department of Computer Science at WMU.

Next >> LBM for GPU Clusters

LBM for GPU Clusters

The lattice Boltzmann method (LBM) holds tremendous promise for the challenging discipline of computational fluid dynamics. It reduces to a regular data parallel procedure making it a good fit for high performance computations. While there have been many efficient implementations of the lattice Boltzmann method for the GPU, there has not been as much work done with multi-GPU and GPU cluster implementations. However, GPU LBM solvers that can perform large scale simulations will be a big boon to researchers. So say a group of French researchers, who for these reasons, decided to undertake an MPI-CUDA implementation of the lattice Boltzmann method.

They’ve written a paper in the Parallel Computing journal describing an efficient LBM implementation for CUDA GPU clusters. They note that their “solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain.” The performance and measurement work were carried out on a cluster using up to 24 GPUs. The final analysis showed that peak performance as well as weak and strong scalability are satisfactory, “both in terms of data throughput and parallelisation efficiency.”

Fig. 6. Communication phase — shape The upper part of the graph outlines the path followed by data leaving the sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution. Source.

Next >> Cloud Programming Model

Cloud Programming for Predictable Performance

The International Journal of Grid and Distributed Computing includes an interesting study, titled “BSPCloud: A Hybrid Distributed-memory and Shared-memory Programming Model.”

A group of researchers from Shanghai University and China Telecom Corporation Ltd. write that “current programming models for cloud computing mainly focus on improving the efficiency of the cloud computing platforms but little has been done on the performance predictability of models.” In light of this, they are investigating a new programming model for cloud computing, called BSPCloud, that leverages multicore architectures while also providing predictable performance.

The team explain that “BSPCloud uses a hybrid of distributed-memory and shared-memory bulk synchronous parallel (BSP) programming model. Computing tasks are first divided into a set of coarse granularity bulks which are computed by the distributed-memory BSP model, and each coarse granularity bulk is further divided into a set of bulk threads which are computed by the shared-memory BSP model.”

The paper presents a proof-of-concept BSPCloud parallel programming library implemented in java. The researchers use the BSPCloud library on matrix multiplication, while the performance predictability and speedup are evaluated in the cloud platform. The results show the speedup and scalability of BSPCloud in different configurations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This