The Week in HPC Research

By Tiffany Trader

April 18, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the remarkable mechanics of bone structure; details about UCSD’s Research CyberInfrastructure (RCI) Program; an efficient approach for Monte Carlo integration on GPUs; an implementation of the lattice Boltzmann method on GPU clusters; and a cloud computing programming model that focuses on predictable performance.

Understanding Bone’s Resilience

A marvel of evolution, bone structure is remarkably strong and resilient, thanks to a combination of collagen (a soft, flexible biomolecule) and the mineral hydroxyapatite (which provides support). The exact pairing of these two substances has long evaded researchers, until now. Recently a team of scientists from MIT revealed how the two materials combine to form a structure that is “simultaneously hard, tough and slightly flexible.”

Using a supercomputer, the researchers were able to model bone structure down to the atomic level to determine its basic building blocks. What they saw was fibers of collagen, strengthened with hydroxyapatite crystals. To determine the accuracy of their model, they compared the results with prior studies of real bone. They also carried out tests on their virtual fibers with different levels of collagen versus mineral, to assess the impact of stress and strain. The tests showed that the mineral crystals were able to withstand four times more stress than the collagen matrix.

“In this arrangement of tiny hydroxyapatite grains embedded in the collagen matrix, the two materials can each contribute the best of their properties. Hydroxyapatite takes most of the forces in the material, whereas collagen takes most of the stretching,” explained Mark Buehler, the project’s lead scientist, an associate professor of civil and environmental engineering (CEE) at MIT.

Thanks to recent advances in supercomputing, modeling work that would have taken years of compute time even a few years ago was completed in just months. The research could lead to a better understanding of brittle bone diseases like osteoporosis. The next step, according to Buehler, is to recreate bone-like materials in lab.

The findings were published this week in the journal Nature Communications.

Next >> UCSD’s RCI Program

UCSD’s Research CyberInfrastructure (RCI) Program

UC San Diego established its Research CyberInfrastructure (RCI) Program in 2009 to support the scientific research activities of its campus. Earlier this month, Richard Moore, Deputy Director of the San Diego Supercomputer Center, discussed the program’s progress at the 5th Annual University of Massachusetts and New England Area Librarian e-Science Symposium in Shrewsbury, Mass.

In his address titled “UCSD’s Research CyberInfrastructure (RCI) Program: Enabling Research Thru Shared Services,” Moore presented an overview of the work the Research CyberInfrastructure (RCI) Program is doing to support researchers at the University of California San Diego.

The integrated cyberinsfrastructure includes datacenter colocation, networking, centralized storage, data curation, research computing, as well as technical expertise. Moore says the program will:

  • Increase competitiveness of UCSD researchers.
  • Realize cost efficiencies and improve service via economies of scale and shared services.
  • Preserve UCSD’s digital intellectual property.
  • Save energy/$ and effectively use datacenter capital investments (colocation)

In order to better serve its research community, UCSD undertook a survey of the campus’s principal investigators (PIs). Moore provides a peek at some of the noteworthy findings of the soon-to-be-published report.

The interviews were undertaken with a broad sample of approximately 50 representative PIs. Asked where their data was coming from, the responses showed that about 50 percent was from campus instruments, 30 percent from simulations, 20 percent from field instruments, with roughly 15 percent resulting from other external sources. The percentages reflect the number of PIs not the amount of data and since individual PIs use multiple solutions, percentages total more than 100 percent.

A significant finding was the importance of stability and long-term planning. Responses show real interest in user adoption, but only if there is a strong commitment on the campus side that includes keeping prices down for a definite period of time. The survey also reflects the need for a high performance and sustainable storage service.

Next >> Monte Carlo Integration of GPUs

Monte Carlo Integration on GPUs

Researchers Rida Assaf and Dr. E. de Doncker from the College of Engineering and Applied Sciences at Western Michigan University (WMU) are exploring an efficient approach for Monte Carlo integration on GPUs.

As Assaf explains, Monte Carlo simulations are employed in many fields, including computer-aided design (e.g., automotive safety), finite elements (using tessellations), molecular modeling, particle physics, finance (cash flow, mortgage obligations), psychology/biometrics (e.g. analysis of taste testing), and statistics.

Their experiment employed the NVIDIA Tesla M2090 GPU card, which enables 665 gigaflops peak double-precision floating point performance, or 1,331 gigaflops peak single precision. Each card has 512 CUDA cores, 6 GB of GDDR5 memory and a memory bandwidth of 177 GB/sec (with error-correcting turned off).

The team leveraged the GPUs for several DICE functions, often used in nuclear physics for modeling the behavior of particle interactions. They found that the program achieved speedups of up to 181 compared to sequential execution, tested on different functions.

In the future, the researchers plan to take on multicore and distributed computations using the cluster at the High Performance Computational Science Laboratory (HPCS), Department of Computer Science at WMU.

Next >> LBM for GPU Clusters

LBM for GPU Clusters

The lattice Boltzmann method (LBM) holds tremendous promise for the challenging discipline of computational fluid dynamics. It reduces to a regular data parallel procedure making it a good fit for high performance computations. While there have been many efficient implementations of the lattice Boltzmann method for the GPU, there has not been as much work done with multi-GPU and GPU cluster implementations. However, GPU LBM solvers that can perform large scale simulations will be a big boon to researchers. So say a group of French researchers, who for these reasons, decided to undertake an MPI-CUDA implementation of the lattice Boltzmann method.

They’ve written a paper in the Parallel Computing journal describing an efficient LBM implementation for CUDA GPU clusters. They note that their “solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain.” The performance and measurement work were carried out on a cluster using up to 24 GPUs. The final analysis showed that peak performance as well as weak and strong scalability are satisfactory, “both in terms of data throughput and parallelisation efficiency.”

Fig. 6. Communication phase — shape The upper part of the graph outlines the path followed by data leaving the sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution. Source.

Next >> Cloud Programming Model

Cloud Programming for Predictable Performance

The International Journal of Grid and Distributed Computing includes an interesting study, titled “BSPCloud: A Hybrid Distributed-memory and Shared-memory Programming Model.”

A group of researchers from Shanghai University and China Telecom Corporation Ltd. write that “current programming models for cloud computing mainly focus on improving the efficiency of the cloud computing platforms but little has been done on the performance predictability of models.” In light of this, they are investigating a new programming model for cloud computing, called BSPCloud, that leverages multicore architectures while also providing predictable performance.

The team explain that “BSPCloud uses a hybrid of distributed-memory and shared-memory bulk synchronous parallel (BSP) programming model. Computing tasks are first divided into a set of coarse granularity bulks which are computed by the distributed-memory BSP model, and each coarse granularity bulk is further divided into a set of bulk threads which are computed by the shared-memory BSP model.”

The paper presents a proof-of-concept BSPCloud parallel programming library implemented in java. The researchers use the BSPCloud library on matrix multiplication, while the performance predictability and speedup are evaluated in the cloud platform. The results show the speedup and scalability of BSPCloud in different configurations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This