The Week in HPC Research

By Tiffany Trader

April 18, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the remarkable mechanics of bone structure; details about UCSD’s Research CyberInfrastructure (RCI) Program; an efficient approach for Monte Carlo integration on GPUs; an implementation of the lattice Boltzmann method on GPU clusters; and a cloud computing programming model that focuses on predictable performance.

Understanding Bone’s Resilience

A marvel of evolution, bone structure is remarkably strong and resilient, thanks to a combination of collagen (a soft, flexible biomolecule) and the mineral hydroxyapatite (which provides support). The exact pairing of these two substances has long evaded researchers, until now. Recently a team of scientists from MIT revealed how the two materials combine to form a structure that is “simultaneously hard, tough and slightly flexible.”

Using a supercomputer, the researchers were able to model bone structure down to the atomic level to determine its basic building blocks. What they saw was fibers of collagen, strengthened with hydroxyapatite crystals. To determine the accuracy of their model, they compared the results with prior studies of real bone. They also carried out tests on their virtual fibers with different levels of collagen versus mineral, to assess the impact of stress and strain. The tests showed that the mineral crystals were able to withstand four times more stress than the collagen matrix.

“In this arrangement of tiny hydroxyapatite grains embedded in the collagen matrix, the two materials can each contribute the best of their properties. Hydroxyapatite takes most of the forces in the material, whereas collagen takes most of the stretching,” explained Mark Buehler, the project’s lead scientist, an associate professor of civil and environmental engineering (CEE) at MIT.

Thanks to recent advances in supercomputing, modeling work that would have taken years of compute time even a few years ago was completed in just months. The research could lead to a better understanding of brittle bone diseases like osteoporosis. The next step, according to Buehler, is to recreate bone-like materials in lab.

The findings were published this week in the journal Nature Communications.

Next >> UCSD’s RCI Program

UCSD’s Research CyberInfrastructure (RCI) Program

UC San Diego established its Research CyberInfrastructure (RCI) Program in 2009 to support the scientific research activities of its campus. Earlier this month, Richard Moore, Deputy Director of the San Diego Supercomputer Center, discussed the program’s progress at the 5th Annual University of Massachusetts and New England Area Librarian e-Science Symposium in Shrewsbury, Mass.

In his address titled “UCSD’s Research CyberInfrastructure (RCI) Program: Enabling Research Thru Shared Services,” Moore presented an overview of the work the Research CyberInfrastructure (RCI) Program is doing to support researchers at the University of California San Diego.

The integrated cyberinsfrastructure includes datacenter colocation, networking, centralized storage, data curation, research computing, as well as technical expertise. Moore says the program will:

  • Increase competitiveness of UCSD researchers.
  • Realize cost efficiencies and improve service via economies of scale and shared services.
  • Preserve UCSD’s digital intellectual property.
  • Save energy/$ and effectively use datacenter capital investments (colocation)

In order to better serve its research community, UCSD undertook a survey of the campus’s principal investigators (PIs). Moore provides a peek at some of the noteworthy findings of the soon-to-be-published report.

The interviews were undertaken with a broad sample of approximately 50 representative PIs. Asked where their data was coming from, the responses showed that about 50 percent was from campus instruments, 30 percent from simulations, 20 percent from field instruments, with roughly 15 percent resulting from other external sources. The percentages reflect the number of PIs not the amount of data and since individual PIs use multiple solutions, percentages total more than 100 percent.

A significant finding was the importance of stability and long-term planning. Responses show real interest in user adoption, but only if there is a strong commitment on the campus side that includes keeping prices down for a definite period of time. The survey also reflects the need for a high performance and sustainable storage service.

Next >> Monte Carlo Integration of GPUs

Monte Carlo Integration on GPUs

Researchers Rida Assaf and Dr. E. de Doncker from the College of Engineering and Applied Sciences at Western Michigan University (WMU) are exploring an efficient approach for Monte Carlo integration on GPUs.

As Assaf explains, Monte Carlo simulations are employed in many fields, including computer-aided design (e.g., automotive safety), finite elements (using tessellations), molecular modeling, particle physics, finance (cash flow, mortgage obligations), psychology/biometrics (e.g. analysis of taste testing), and statistics.

Their experiment employed the NVIDIA Tesla M2090 GPU card, which enables 665 gigaflops peak double-precision floating point performance, or 1,331 gigaflops peak single precision. Each card has 512 CUDA cores, 6 GB of GDDR5 memory and a memory bandwidth of 177 GB/sec (with error-correcting turned off).

The team leveraged the GPUs for several DICE functions, often used in nuclear physics for modeling the behavior of particle interactions. They found that the program achieved speedups of up to 181 compared to sequential execution, tested on different functions.

In the future, the researchers plan to take on multicore and distributed computations using the cluster at the High Performance Computational Science Laboratory (HPCS), Department of Computer Science at WMU.

Next >> LBM for GPU Clusters

LBM for GPU Clusters

The lattice Boltzmann method (LBM) holds tremendous promise for the challenging discipline of computational fluid dynamics. It reduces to a regular data parallel procedure making it a good fit for high performance computations. While there have been many efficient implementations of the lattice Boltzmann method for the GPU, there has not been as much work done with multi-GPU and GPU cluster implementations. However, GPU LBM solvers that can perform large scale simulations will be a big boon to researchers. So say a group of French researchers, who for these reasons, decided to undertake an MPI-CUDA implementation of the lattice Boltzmann method.

They’ve written a paper in the Parallel Computing journal describing an efficient LBM implementation for CUDA GPU clusters. They note that their “solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain.” The performance and measurement work were carried out on a cluster using up to 24 GPUs. The final analysis showed that peak performance as well as weak and strong scalability are satisfactory, “both in terms of data throughput and parallelisation efficiency.”

Fig. 6. Communication phase — shape The upper part of the graph outlines the path followed by data leaving the sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution. Source.

Next >> Cloud Programming Model

Cloud Programming for Predictable Performance

The International Journal of Grid and Distributed Computing includes an interesting study, titled “BSPCloud: A Hybrid Distributed-memory and Shared-memory Programming Model.”

A group of researchers from Shanghai University and China Telecom Corporation Ltd. write that “current programming models for cloud computing mainly focus on improving the efficiency of the cloud computing platforms but little has been done on the performance predictability of models.” In light of this, they are investigating a new programming model for cloud computing, called BSPCloud, that leverages multicore architectures while also providing predictable performance.

The team explain that “BSPCloud uses a hybrid of distributed-memory and shared-memory bulk synchronous parallel (BSP) programming model. Computing tasks are first divided into a set of coarse granularity bulks which are computed by the distributed-memory BSP model, and each coarse granularity bulk is further divided into a set of bulk threads which are computed by the shared-memory BSP model.”

The paper presents a proof-of-concept BSPCloud parallel programming library implemented in java. The researchers use the BSPCloud library on matrix multiplication, while the performance predictability and speedup are evaluated in the cloud platform. The results show the speedup and scalability of BSPCloud in different configurations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This