The Week in HPC Research

By Tiffany Trader

April 18, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the remarkable mechanics of bone structure; details about UCSD’s Research CyberInfrastructure (RCI) Program; an efficient approach for Monte Carlo integration on GPUs; an implementation of the lattice Boltzmann method on GPU clusters; and a cloud computing programming model that focuses on predictable performance.

Understanding Bone’s Resilience

A marvel of evolution, bone structure is remarkably strong and resilient, thanks to a combination of collagen (a soft, flexible biomolecule) and the mineral hydroxyapatite (which provides support). The exact pairing of these two substances has long evaded researchers, until now. Recently a team of scientists from MIT revealed how the two materials combine to form a structure that is “simultaneously hard, tough and slightly flexible.”

Using a supercomputer, the researchers were able to model bone structure down to the atomic level to determine its basic building blocks. What they saw was fibers of collagen, strengthened with hydroxyapatite crystals. To determine the accuracy of their model, they compared the results with prior studies of real bone. They also carried out tests on their virtual fibers with different levels of collagen versus mineral, to assess the impact of stress and strain. The tests showed that the mineral crystals were able to withstand four times more stress than the collagen matrix.

“In this arrangement of tiny hydroxyapatite grains embedded in the collagen matrix, the two materials can each contribute the best of their properties. Hydroxyapatite takes most of the forces in the material, whereas collagen takes most of the stretching,” explained Mark Buehler, the project’s lead scientist, an associate professor of civil and environmental engineering (CEE) at MIT.

Thanks to recent advances in supercomputing, modeling work that would have taken years of compute time even a few years ago was completed in just months. The research could lead to a better understanding of brittle bone diseases like osteoporosis. The next step, according to Buehler, is to recreate bone-like materials in lab.

The findings were published this week in the journal Nature Communications.

Next >> UCSD’s RCI Program

UCSD’s Research CyberInfrastructure (RCI) Program

UC San Diego established its Research CyberInfrastructure (RCI) Program in 2009 to support the scientific research activities of its campus. Earlier this month, Richard Moore, Deputy Director of the San Diego Supercomputer Center, discussed the program’s progress at the 5th Annual University of Massachusetts and New England Area Librarian e-Science Symposium in Shrewsbury, Mass.

In his address titled “UCSD’s Research CyberInfrastructure (RCI) Program: Enabling Research Thru Shared Services,” Moore presented an overview of the work the Research CyberInfrastructure (RCI) Program is doing to support researchers at the University of California San Diego.

The integrated cyberinsfrastructure includes datacenter colocation, networking, centralized storage, data curation, research computing, as well as technical expertise. Moore says the program will:

  • Increase competitiveness of UCSD researchers.
  • Realize cost efficiencies and improve service via economies of scale and shared services.
  • Preserve UCSD’s digital intellectual property.
  • Save energy/$ and effectively use datacenter capital investments (colocation)

In order to better serve its research community, UCSD undertook a survey of the campus’s principal investigators (PIs). Moore provides a peek at some of the noteworthy findings of the soon-to-be-published report.

The interviews were undertaken with a broad sample of approximately 50 representative PIs. Asked where their data was coming from, the responses showed that about 50 percent was from campus instruments, 30 percent from simulations, 20 percent from field instruments, with roughly 15 percent resulting from other external sources. The percentages reflect the number of PIs not the amount of data and since individual PIs use multiple solutions, percentages total more than 100 percent.

A significant finding was the importance of stability and long-term planning. Responses show real interest in user adoption, but only if there is a strong commitment on the campus side that includes keeping prices down for a definite period of time. The survey also reflects the need for a high performance and sustainable storage service.

Next >> Monte Carlo Integration of GPUs

Monte Carlo Integration on GPUs

Researchers Rida Assaf and Dr. E. de Doncker from the College of Engineering and Applied Sciences at Western Michigan University (WMU) are exploring an efficient approach for Monte Carlo integration on GPUs.

As Assaf explains, Monte Carlo simulations are employed in many fields, including computer-aided design (e.g., automotive safety), finite elements (using tessellations), molecular modeling, particle physics, finance (cash flow, mortgage obligations), psychology/biometrics (e.g. analysis of taste testing), and statistics.

Their experiment employed the NVIDIA Tesla M2090 GPU card, which enables 665 gigaflops peak double-precision floating point performance, or 1,331 gigaflops peak single precision. Each card has 512 CUDA cores, 6 GB of GDDR5 memory and a memory bandwidth of 177 GB/sec (with error-correcting turned off).

The team leveraged the GPUs for several DICE functions, often used in nuclear physics for modeling the behavior of particle interactions. They found that the program achieved speedups of up to 181 compared to sequential execution, tested on different functions.

In the future, the researchers plan to take on multicore and distributed computations using the cluster at the High Performance Computational Science Laboratory (HPCS), Department of Computer Science at WMU.

Next >> LBM for GPU Clusters

LBM for GPU Clusters

The lattice Boltzmann method (LBM) holds tremendous promise for the challenging discipline of computational fluid dynamics. It reduces to a regular data parallel procedure making it a good fit for high performance computations. While there have been many efficient implementations of the lattice Boltzmann method for the GPU, there has not been as much work done with multi-GPU and GPU cluster implementations. However, GPU LBM solvers that can perform large scale simulations will be a big boon to researchers. So say a group of French researchers, who for these reasons, decided to undertake an MPI-CUDA implementation of the lattice Boltzmann method.

They’ve written a paper in the Parallel Computing journal describing an efficient LBM implementation for CUDA GPU clusters. They note that their “solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain.” The performance and measurement work were carried out on a cluster using up to 24 GPUs. The final analysis showed that peak performance as well as weak and strong scalability are satisfactory, “both in terms of data throughput and parallelisation efficiency.”

Fig. 6. Communication phase — shape The upper part of the graph outlines the path followed by data leaving the sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution. Source.

Next >> Cloud Programming Model

Cloud Programming for Predictable Performance

The International Journal of Grid and Distributed Computing includes an interesting study, titled “BSPCloud: A Hybrid Distributed-memory and Shared-memory Programming Model.”

A group of researchers from Shanghai University and China Telecom Corporation Ltd. write that “current programming models for cloud computing mainly focus on improving the efficiency of the cloud computing platforms but little has been done on the performance predictability of models.” In light of this, they are investigating a new programming model for cloud computing, called BSPCloud, that leverages multicore architectures while also providing predictable performance.

The team explain that “BSPCloud uses a hybrid of distributed-memory and shared-memory bulk synchronous parallel (BSP) programming model. Computing tasks are first divided into a set of coarse granularity bulks which are computed by the distributed-memory BSP model, and each coarse granularity bulk is further divided into a set of bulk threads which are computed by the shared-memory BSP model.”

The paper presents a proof-of-concept BSPCloud parallel programming library implemented in java. The researchers use the BSPCloud library on matrix multiplication, while the performance predictability and speedup are evaluated in the cloud platform. The results show the speedup and scalability of BSPCloud in different configurations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This