Big Red II Colors New Page for Hybrid Systems

By Nicole Hemsoth

April 19, 2013

Back in 1995, Thomas Sterling, along with academic comrades Paul Messina and Paul Smith collaborated on a forward-looking tome called, Enabling Technologies for Petaflops Computing, which explored a far-flung future that has finally arrived.

During a chat with Sterling this morning, the topic of the book cropped up, in part because the Indiana University professor (and notable luminary in Beowulf and thought leadership circles) has been biding his time until he could have a petaflopper to call his own—or at least one in cozy reaching distance at IU.

Later this month, Indiana University will formally introduce the successor to the Big Red system, the aptly-named, Big Red II. The Cray-crafted and tuned system is 25 times faster than its baby brother (the 4100-core original Big Red from 2006) and sports some notable improvements across its 1,020 nodes. With some Kepler spice and the snappy Gemini interconnect to push its peak one teraflop performance to an expected top 30 range for June’s list, the system will aim its big guns at true “big data” problems.

IU thinks some theoretical work on the “little” 210,000-core Big Red II can unleash some optimization dragons for systems like Titan and Blue Waters to ride, at least in theory. With a common, mixed-up architecture that is either homogeneous or heterogeneous, depending on how it’s feeling for particular applications, there are significant opportunities to fine-tune core operations to take best advantage of any configuration.

What’s needed for such systems is an execution model that can self-adapt on non-uniform systems. And since it’s the same big idea on a smaller canvas (than Titan and Blue Waters), Sterling said he has hope that tweaking the ParalleX execution model could yield some big returns.

Although Big Red II is far smaller than Titan or Blue Waters, it’s the same technology, architecture and software environment than its big hybrid peers—and this triad of features is likely to be at the top of the trend list for new systems in the coming years.

On that note, Sterling was in the midst of a trip this week to Sandia National Lab (both part of the XPRESS project) to talk about Big Red II and these experimental pieces of a potential programming model and runtime system that might play nicely with such unique, hybrid supers. There are obvious architectural similarities between big boy systems like Titan and Blue Waters, and the Hoosiers have hopes that Big Red II can help create a playbook for similar system operators to score maximum performance, scalability and of course, efficiency out of their supers.

There are a few things that Sterling and his many counterparts expect from Big Red, including counting on its iron hand to help shove some new ideas about using these trend-setting systems efficiently and at massive scale. “The trick is to address the challenges of asynchrony and compensate for that uncertainty. That’s what our runtime system will demonstrate, or so we hope—at least for some applications on Cray systems like the one we have now.”

The other proof pudding they hope to whip up at IU relates to tackling new classes of data-intensive problems that are memory-bound, exploit locality and move beyond traditional numerically-oriented approaches. We need to move back toward an older concept that never enjoyed its day in the sun, argues Sterling—we need to think back to the promise of symbolic computing and how systems like Big Red and others can turn the standard model on end. Overused buzzword or not, this is all about “big data,” a topic that can’t be shoved under the HPC rug as a trend when it’s already influencing the shift toward Titan-esque systems.

On the big data front, Sterling and his team at IU, under the university’s VP of IT and CIO, Brad Wheeler, set about driving stakes in new supercomputing ground, the emphasis was on pushing performance. But just as important as floating point was the need to make critical decisions about memory. He pointed to a number of people at IU that helped make core decisions, and also to Bill Blake from Cray who helped them refine and tweak to perfection.

Sterling notes that in terms of system design (full specs here), the choice to snap in AMD Interlagos and Abu Dhabi processors wasn’t an Intel versus AMD decision, it was “purely generational” for this pre-Intel Cray design. The Kepler cores were a key investment since, as Sterling described, there are “many science codes that, with sufficient refactoring, could take advantage of GPUS.” He said, “It doesn’t mean it’s easy, but under the right circumstances, we’re looking at a 5x to 10x speedup.” This is going to boost their production capabilities to new levels, he notes, and is aided by the fact that Geoffrey Fox and other critical folks at IU were pushing fresh envelopes on the GPU and parallel computing fronts before this Kepler-sporting system landed on their datacenter doorstep to begin with.

In terms of extracting ultra performance on a system designed with data-intensive problems in mind, Sterling said there is a balance between FLOPS and big data considerations, including laying down memory foundations and keeping data and compute at the end of the same stick. “The importance of FLOPS will continue to grow,” he notes, “but the importance of big data and knowledge analytics will grow faster.”

 “It’s the symbolic graph structures and future architectures we need to make computers understand its data, not just manipulate…right now, that’s a big constraint. The work on Big Red II will let us move closer to knowledge, knowledge management and most importantly, machine understanding of knowledge and that will change how we pursue problems in climate change, drug design, very complex system design as in large aircraft that doesn’t take decades–but weeks or less.”

 “Computers manipulate data and take action on it. Human beings manipulate knowledge and make that actionable and there’s a gap between data and knowledge. We don’t want big data—we want smart knowledge. And that’s where the research has to be and that’s how the usage patterns of big computers need to reflect.”

Whether or not “big data” is just a new term for wrapping HPC around a new architecture that’s optimized for certain applications or problems, it’s a term that has staying power, even for the self-confessed “hype hater” Sterling. But at the end of the day, for the guy who helped write the book on what petascale systems would be made of, Sterling says that “here so many years later, I’m finally getting my hands on [a system]. It’s closure in my career and truly an exciting time.”

Related Articles

IU’s Big Red II Supercomputer Being Dedicated on April 26

IU Data Capacitor II Joins Big Red Supercomputer II

Indiana University to Deploy Petascale Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This