Big Red II Colors New Page for Hybrid Systems

By Nicole Hemsoth

April 19, 2013

Back in 1995, Thomas Sterling, along with academic comrades Paul Messina and Paul Smith collaborated on a forward-looking tome called, Enabling Technologies for Petaflops Computing, which explored a far-flung future that has finally arrived.

During a chat with Sterling this morning, the topic of the book cropped up, in part because the Indiana University professor (and notable luminary in Beowulf and thought leadership circles) has been biding his time until he could have a petaflopper to call his own—or at least one in cozy reaching distance at IU.

Later this month, Indiana University will formally introduce the successor to the Big Red system, the aptly-named, Big Red II. The Cray-crafted and tuned system is 25 times faster than its baby brother (the 4100-core original Big Red from 2006) and sports some notable improvements across its 1,020 nodes. With some Kepler spice and the snappy Gemini interconnect to push its peak one teraflop performance to an expected top 30 range for June’s list, the system will aim its big guns at true “big data” problems.

IU thinks some theoretical work on the “little” 210,000-core Big Red II can unleash some optimization dragons for systems like Titan and Blue Waters to ride, at least in theory. With a common, mixed-up architecture that is either homogeneous or heterogeneous, depending on how it’s feeling for particular applications, there are significant opportunities to fine-tune core operations to take best advantage of any configuration.

What’s needed for such systems is an execution model that can self-adapt on non-uniform systems. And since it’s the same big idea on a smaller canvas (than Titan and Blue Waters), Sterling said he has hope that tweaking the ParalleX execution model could yield some big returns.

Although Big Red II is far smaller than Titan or Blue Waters, it’s the same technology, architecture and software environment than its big hybrid peers—and this triad of features is likely to be at the top of the trend list for new systems in the coming years.

On that note, Sterling was in the midst of a trip this week to Sandia National Lab (both part of the XPRESS project) to talk about Big Red II and these experimental pieces of a potential programming model and runtime system that might play nicely with such unique, hybrid supers. There are obvious architectural similarities between big boy systems like Titan and Blue Waters, and the Hoosiers have hopes that Big Red II can help create a playbook for similar system operators to score maximum performance, scalability and of course, efficiency out of their supers.

There are a few things that Sterling and his many counterparts expect from Big Red, including counting on its iron hand to help shove some new ideas about using these trend-setting systems efficiently and at massive scale. “The trick is to address the challenges of asynchrony and compensate for that uncertainty. That’s what our runtime system will demonstrate, or so we hope—at least for some applications on Cray systems like the one we have now.”

The other proof pudding they hope to whip up at IU relates to tackling new classes of data-intensive problems that are memory-bound, exploit locality and move beyond traditional numerically-oriented approaches. We need to move back toward an older concept that never enjoyed its day in the sun, argues Sterling—we need to think back to the promise of symbolic computing and how systems like Big Red and others can turn the standard model on end. Overused buzzword or not, this is all about “big data,” a topic that can’t be shoved under the HPC rug as a trend when it’s already influencing the shift toward Titan-esque systems.

On the big data front, Sterling and his team at IU, under the university’s VP of IT and CIO, Brad Wheeler, set about driving stakes in new supercomputing ground, the emphasis was on pushing performance. But just as important as floating point was the need to make critical decisions about memory. He pointed to a number of people at IU that helped make core decisions, and also to Bill Blake from Cray who helped them refine and tweak to perfection.

Sterling notes that in terms of system design (full specs here), the choice to snap in AMD Interlagos and Abu Dhabi processors wasn’t an Intel versus AMD decision, it was “purely generational” for this pre-Intel Cray design. The Kepler cores were a key investment since, as Sterling described, there are “many science codes that, with sufficient refactoring, could take advantage of GPUS.” He said, “It doesn’t mean it’s easy, but under the right circumstances, we’re looking at a 5x to 10x speedup.” This is going to boost their production capabilities to new levels, he notes, and is aided by the fact that Geoffrey Fox and other critical folks at IU were pushing fresh envelopes on the GPU and parallel computing fronts before this Kepler-sporting system landed on their datacenter doorstep to begin with.

In terms of extracting ultra performance on a system designed with data-intensive problems in mind, Sterling said there is a balance between FLOPS and big data considerations, including laying down memory foundations and keeping data and compute at the end of the same stick. “The importance of FLOPS will continue to grow,” he notes, “but the importance of big data and knowledge analytics will grow faster.”

 “It’s the symbolic graph structures and future architectures we need to make computers understand its data, not just manipulate…right now, that’s a big constraint. The work on Big Red II will let us move closer to knowledge, knowledge management and most importantly, machine understanding of knowledge and that will change how we pursue problems in climate change, drug design, very complex system design as in large aircraft that doesn’t take decades–but weeks or less.”

 “Computers manipulate data and take action on it. Human beings manipulate knowledge and make that actionable and there’s a gap between data and knowledge. We don’t want big data—we want smart knowledge. And that’s where the research has to be and that’s how the usage patterns of big computers need to reflect.”

Whether or not “big data” is just a new term for wrapping HPC around a new architecture that’s optimized for certain applications or problems, it’s a term that has staying power, even for the self-confessed “hype hater” Sterling. But at the end of the day, for the guy who helped write the book on what petascale systems would be made of, Sterling says that “here so many years later, I’m finally getting my hands on [a system]. It’s closure in my career and truly an exciting time.”

Related Articles

IU’s Big Red II Supercomputer Being Dedicated on April 26

IU Data Capacitor II Joins Big Red Supercomputer II

Indiana University to Deploy Petascale Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This