Big Red II Colors New Page for Hybrid Systems

By Nicole Hemsoth

April 19, 2013

Back in 1995, Thomas Sterling, along with academic comrades Paul Messina and Paul Smith collaborated on a forward-looking tome called, Enabling Technologies for Petaflops Computing, which explored a far-flung future that has finally arrived.

During a chat with Sterling this morning, the topic of the book cropped up, in part because the Indiana University professor (and notable luminary in Beowulf and thought leadership circles) has been biding his time until he could have a petaflopper to call his own—or at least one in cozy reaching distance at IU.

Later this month, Indiana University will formally introduce the successor to the Big Red system, the aptly-named, Big Red II. The Cray-crafted and tuned system is 25 times faster than its baby brother (the 4100-core original Big Red from 2006) and sports some notable improvements across its 1,020 nodes. With some Kepler spice and the snappy Gemini interconnect to push its peak one teraflop performance to an expected top 30 range for June’s list, the system will aim its big guns at true “big data” problems.

IU thinks some theoretical work on the “little” 210,000-core Big Red II can unleash some optimization dragons for systems like Titan and Blue Waters to ride, at least in theory. With a common, mixed-up architecture that is either homogeneous or heterogeneous, depending on how it’s feeling for particular applications, there are significant opportunities to fine-tune core operations to take best advantage of any configuration.

What’s needed for such systems is an execution model that can self-adapt on non-uniform systems. And since it’s the same big idea on a smaller canvas (than Titan and Blue Waters), Sterling said he has hope that tweaking the ParalleX execution model could yield some big returns.

Although Big Red II is far smaller than Titan or Blue Waters, it’s the same technology, architecture and software environment than its big hybrid peers—and this triad of features is likely to be at the top of the trend list for new systems in the coming years.

On that note, Sterling was in the midst of a trip this week to Sandia National Lab (both part of the XPRESS project) to talk about Big Red II and these experimental pieces of a potential programming model and runtime system that might play nicely with such unique, hybrid supers. There are obvious architectural similarities between big boy systems like Titan and Blue Waters, and the Hoosiers have hopes that Big Red II can help create a playbook for similar system operators to score maximum performance, scalability and of course, efficiency out of their supers.

There are a few things that Sterling and his many counterparts expect from Big Red, including counting on its iron hand to help shove some new ideas about using these trend-setting systems efficiently and at massive scale. “The trick is to address the challenges of asynchrony and compensate for that uncertainty. That’s what our runtime system will demonstrate, or so we hope—at least for some applications on Cray systems like the one we have now.”

The other proof pudding they hope to whip up at IU relates to tackling new classes of data-intensive problems that are memory-bound, exploit locality and move beyond traditional numerically-oriented approaches. We need to move back toward an older concept that never enjoyed its day in the sun, argues Sterling—we need to think back to the promise of symbolic computing and how systems like Big Red and others can turn the standard model on end. Overused buzzword or not, this is all about “big data,” a topic that can’t be shoved under the HPC rug as a trend when it’s already influencing the shift toward Titan-esque systems.

On the big data front, Sterling and his team at IU, under the university’s VP of IT and CIO, Brad Wheeler, set about driving stakes in new supercomputing ground, the emphasis was on pushing performance. But just as important as floating point was the need to make critical decisions about memory. He pointed to a number of people at IU that helped make core decisions, and also to Bill Blake from Cray who helped them refine and tweak to perfection.

Sterling notes that in terms of system design (full specs here), the choice to snap in AMD Interlagos and Abu Dhabi processors wasn’t an Intel versus AMD decision, it was “purely generational” for this pre-Intel Cray design. The Kepler cores were a key investment since, as Sterling described, there are “many science codes that, with sufficient refactoring, could take advantage of GPUS.” He said, “It doesn’t mean it’s easy, but under the right circumstances, we’re looking at a 5x to 10x speedup.” This is going to boost their production capabilities to new levels, he notes, and is aided by the fact that Geoffrey Fox and other critical folks at IU were pushing fresh envelopes on the GPU and parallel computing fronts before this Kepler-sporting system landed on their datacenter doorstep to begin with.

In terms of extracting ultra performance on a system designed with data-intensive problems in mind, Sterling said there is a balance between FLOPS and big data considerations, including laying down memory foundations and keeping data and compute at the end of the same stick. “The importance of FLOPS will continue to grow,” he notes, “but the importance of big data and knowledge analytics will grow faster.”

 “It’s the symbolic graph structures and future architectures we need to make computers understand its data, not just manipulate…right now, that’s a big constraint. The work on Big Red II will let us move closer to knowledge, knowledge management and most importantly, machine understanding of knowledge and that will change how we pursue problems in climate change, drug design, very complex system design as in large aircraft that doesn’t take decades–but weeks or less.”

 “Computers manipulate data and take action on it. Human beings manipulate knowledge and make that actionable and there’s a gap between data and knowledge. We don’t want big data—we want smart knowledge. And that’s where the research has to be and that’s how the usage patterns of big computers need to reflect.”

Whether or not “big data” is just a new term for wrapping HPC around a new architecture that’s optimized for certain applications or problems, it’s a term that has staying power, even for the self-confessed “hype hater” Sterling. But at the end of the day, for the guy who helped write the book on what petascale systems would be made of, Sterling says that “here so many years later, I’m finally getting my hands on [a system]. It’s closure in my career and truly an exciting time.”

Related Articles

IU’s Big Red II Supercomputer Being Dedicated on April 26

IU Data Capacitor II Joins Big Red Supercomputer II

Indiana University to Deploy Petascale Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This