Big Red II Colors New Page for Hybrid Systems

By Nicole Hemsoth

April 19, 2013

Back in 1995, Thomas Sterling, along with academic comrades Paul Messina and Paul Smith collaborated on a forward-looking tome called, Enabling Technologies for Petaflops Computing, which explored a far-flung future that has finally arrived.

During a chat with Sterling this morning, the topic of the book cropped up, in part because the Indiana University professor (and notable luminary in Beowulf and thought leadership circles) has been biding his time until he could have a petaflopper to call his own—or at least one in cozy reaching distance at IU.

Later this month, Indiana University will formally introduce the successor to the Big Red system, the aptly-named, Big Red II. The Cray-crafted and tuned system is 25 times faster than its baby brother (the 4100-core original Big Red from 2006) and sports some notable improvements across its 1,020 nodes. With some Kepler spice and the snappy Gemini interconnect to push its peak one teraflop performance to an expected top 30 range for June’s list, the system will aim its big guns at true “big data” problems.

IU thinks some theoretical work on the “little” 210,000-core Big Red II can unleash some optimization dragons for systems like Titan and Blue Waters to ride, at least in theory. With a common, mixed-up architecture that is either homogeneous or heterogeneous, depending on how it’s feeling for particular applications, there are significant opportunities to fine-tune core operations to take best advantage of any configuration.

What’s needed for such systems is an execution model that can self-adapt on non-uniform systems. And since it’s the same big idea on a smaller canvas (than Titan and Blue Waters), Sterling said he has hope that tweaking the ParalleX execution model could yield some big returns.

Although Big Red II is far smaller than Titan or Blue Waters, it’s the same technology, architecture and software environment than its big hybrid peers—and this triad of features is likely to be at the top of the trend list for new systems in the coming years.

On that note, Sterling was in the midst of a trip this week to Sandia National Lab (both part of the XPRESS project) to talk about Big Red II and these experimental pieces of a potential programming model and runtime system that might play nicely with such unique, hybrid supers. There are obvious architectural similarities between big boy systems like Titan and Blue Waters, and the Hoosiers have hopes that Big Red II can help create a playbook for similar system operators to score maximum performance, scalability and of course, efficiency out of their supers.

There are a few things that Sterling and his many counterparts expect from Big Red, including counting on its iron hand to help shove some new ideas about using these trend-setting systems efficiently and at massive scale. “The trick is to address the challenges of asynchrony and compensate for that uncertainty. That’s what our runtime system will demonstrate, or so we hope—at least for some applications on Cray systems like the one we have now.”

The other proof pudding they hope to whip up at IU relates to tackling new classes of data-intensive problems that are memory-bound, exploit locality and move beyond traditional numerically-oriented approaches. We need to move back toward an older concept that never enjoyed its day in the sun, argues Sterling—we need to think back to the promise of symbolic computing and how systems like Big Red and others can turn the standard model on end. Overused buzzword or not, this is all about “big data,” a topic that can’t be shoved under the HPC rug as a trend when it’s already influencing the shift toward Titan-esque systems.

On the big data front, Sterling and his team at IU, under the university’s VP of IT and CIO, Brad Wheeler, set about driving stakes in new supercomputing ground, the emphasis was on pushing performance. But just as important as floating point was the need to make critical decisions about memory. He pointed to a number of people at IU that helped make core decisions, and also to Bill Blake from Cray who helped them refine and tweak to perfection.

Sterling notes that in terms of system design (full specs here), the choice to snap in AMD Interlagos and Abu Dhabi processors wasn’t an Intel versus AMD decision, it was “purely generational” for this pre-Intel Cray design. The Kepler cores were a key investment since, as Sterling described, there are “many science codes that, with sufficient refactoring, could take advantage of GPUS.” He said, “It doesn’t mean it’s easy, but under the right circumstances, we’re looking at a 5x to 10x speedup.” This is going to boost their production capabilities to new levels, he notes, and is aided by the fact that Geoffrey Fox and other critical folks at IU were pushing fresh envelopes on the GPU and parallel computing fronts before this Kepler-sporting system landed on their datacenter doorstep to begin with.

In terms of extracting ultra performance on a system designed with data-intensive problems in mind, Sterling said there is a balance between FLOPS and big data considerations, including laying down memory foundations and keeping data and compute at the end of the same stick. “The importance of FLOPS will continue to grow,” he notes, “but the importance of big data and knowledge analytics will grow faster.”

 “It’s the symbolic graph structures and future architectures we need to make computers understand its data, not just manipulate…right now, that’s a big constraint. The work on Big Red II will let us move closer to knowledge, knowledge management and most importantly, machine understanding of knowledge and that will change how we pursue problems in climate change, drug design, very complex system design as in large aircraft that doesn’t take decades–but weeks or less.”

 “Computers manipulate data and take action on it. Human beings manipulate knowledge and make that actionable and there’s a gap between data and knowledge. We don’t want big data—we want smart knowledge. And that’s where the research has to be and that’s how the usage patterns of big computers need to reflect.”

Whether or not “big data” is just a new term for wrapping HPC around a new architecture that’s optimized for certain applications or problems, it’s a term that has staying power, even for the self-confessed “hype hater” Sterling. But at the end of the day, for the guy who helped write the book on what petascale systems would be made of, Sterling says that “here so many years later, I’m finally getting my hands on [a system]. It’s closure in my career and truly an exciting time.”

Related Articles

IU’s Big Red II Supercomputer Being Dedicated on April 26

IU Data Capacitor II Joins Big Red Supercomputer II

Indiana University to Deploy Petascale Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This