Big Red II Colors New Page for Hybrid Systems

By Nicole Hemsoth

April 19, 2013

Back in 1995, Thomas Sterling, along with academic comrades Paul Messina and Paul Smith collaborated on a forward-looking tome called, Enabling Technologies for Petaflops Computing, which explored a far-flung future that has finally arrived.

During a chat with Sterling this morning, the topic of the book cropped up, in part because the Indiana University professor (and notable luminary in Beowulf and thought leadership circles) has been biding his time until he could have a petaflopper to call his own—or at least one in cozy reaching distance at IU.

Later this month, Indiana University will formally introduce the successor to the Big Red system, the aptly-named, Big Red II. The Cray-crafted and tuned system is 25 times faster than its baby brother (the 4100-core original Big Red from 2006) and sports some notable improvements across its 1,020 nodes. With some Kepler spice and the snappy Gemini interconnect to push its peak one teraflop performance to an expected top 30 range for June’s list, the system will aim its big guns at true “big data” problems.

IU thinks some theoretical work on the “little” 210,000-core Big Red II can unleash some optimization dragons for systems like Titan and Blue Waters to ride, at least in theory. With a common, mixed-up architecture that is either homogeneous or heterogeneous, depending on how it’s feeling for particular applications, there are significant opportunities to fine-tune core operations to take best advantage of any configuration.

What’s needed for such systems is an execution model that can self-adapt on non-uniform systems. And since it’s the same big idea on a smaller canvas (than Titan and Blue Waters), Sterling said he has hope that tweaking the ParalleX execution model could yield some big returns.

Although Big Red II is far smaller than Titan or Blue Waters, it’s the same technology, architecture and software environment than its big hybrid peers—and this triad of features is likely to be at the top of the trend list for new systems in the coming years.

On that note, Sterling was in the midst of a trip this week to Sandia National Lab (both part of the XPRESS project) to talk about Big Red II and these experimental pieces of a potential programming model and runtime system that might play nicely with such unique, hybrid supers. There are obvious architectural similarities between big boy systems like Titan and Blue Waters, and the Hoosiers have hopes that Big Red II can help create a playbook for similar system operators to score maximum performance, scalability and of course, efficiency out of their supers.

There are a few things that Sterling and his many counterparts expect from Big Red, including counting on its iron hand to help shove some new ideas about using these trend-setting systems efficiently and at massive scale. “The trick is to address the challenges of asynchrony and compensate for that uncertainty. That’s what our runtime system will demonstrate, or so we hope—at least for some applications on Cray systems like the one we have now.”

The other proof pudding they hope to whip up at IU relates to tackling new classes of data-intensive problems that are memory-bound, exploit locality and move beyond traditional numerically-oriented approaches. We need to move back toward an older concept that never enjoyed its day in the sun, argues Sterling—we need to think back to the promise of symbolic computing and how systems like Big Red and others can turn the standard model on end. Overused buzzword or not, this is all about “big data,” a topic that can’t be shoved under the HPC rug as a trend when it’s already influencing the shift toward Titan-esque systems.

On the big data front, Sterling and his team at IU, under the university’s VP of IT and CIO, Brad Wheeler, set about driving stakes in new supercomputing ground, the emphasis was on pushing performance. But just as important as floating point was the need to make critical decisions about memory. He pointed to a number of people at IU that helped make core decisions, and also to Bill Blake from Cray who helped them refine and tweak to perfection.

Sterling notes that in terms of system design (full specs here), the choice to snap in AMD Interlagos and Abu Dhabi processors wasn’t an Intel versus AMD decision, it was “purely generational” for this pre-Intel Cray design. The Kepler cores were a key investment since, as Sterling described, there are “many science codes that, with sufficient refactoring, could take advantage of GPUS.” He said, “It doesn’t mean it’s easy, but under the right circumstances, we’re looking at a 5x to 10x speedup.” This is going to boost their production capabilities to new levels, he notes, and is aided by the fact that Geoffrey Fox and other critical folks at IU were pushing fresh envelopes on the GPU and parallel computing fronts before this Kepler-sporting system landed on their datacenter doorstep to begin with.

In terms of extracting ultra performance on a system designed with data-intensive problems in mind, Sterling said there is a balance between FLOPS and big data considerations, including laying down memory foundations and keeping data and compute at the end of the same stick. “The importance of FLOPS will continue to grow,” he notes, “but the importance of big data and knowledge analytics will grow faster.”

 “It’s the symbolic graph structures and future architectures we need to make computers understand its data, not just manipulate…right now, that’s a big constraint. The work on Big Red II will let us move closer to knowledge, knowledge management and most importantly, machine understanding of knowledge and that will change how we pursue problems in climate change, drug design, very complex system design as in large aircraft that doesn’t take decades–but weeks or less.”

 “Computers manipulate data and take action on it. Human beings manipulate knowledge and make that actionable and there’s a gap between data and knowledge. We don’t want big data—we want smart knowledge. And that’s where the research has to be and that’s how the usage patterns of big computers need to reflect.”

Whether or not “big data” is just a new term for wrapping HPC around a new architecture that’s optimized for certain applications or problems, it’s a term that has staying power, even for the self-confessed “hype hater” Sterling. But at the end of the day, for the guy who helped write the book on what petascale systems would be made of, Sterling says that “here so many years later, I’m finally getting my hands on [a system]. It’s closure in my career and truly an exciting time.”

Related Articles

IU’s Big Red II Supercomputer Being Dedicated on April 26

IU Data Capacitor II Joins Big Red Supercomputer II

Indiana University to Deploy Petascale Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This