A Conversation with Dr. Hans Meuer and Dr. Horst Gietl

By Miha Ahronovitz

April 22, 2013

The House of Lords and Supercomputing

About one year ago, in April 2012, the House of Lords invited the International Supercomputing Conference ISC’13 General Chair Hans Meuer to deliver a presentation with a rather provocative title: Supercomputers – Prestige Objects or Crucial Tools in Science and Industry.

Dr. Meuer, a professor of Computer Science at the University of Mannheim and general manager of Prometeus GmbH, co-authored the paper with Dr. Horst Gietl, an executive consultant at Prometeus

Figure (L-to-R): Professor Hans Meuer, Lord Laird and Kevin Cahill

Why would the venerable House of Lords be interested in supercomputing? For one thing, the Second Lorraine King Memorial Lecture was hosted by Professor John Dunn Laird, the Lord Laird of Artigarvan, a former computer programmer.

A professional computer expert is now part of the House of Lords, as perhaps a recognition of the roles Computer Science and IT play in our society and in the production of wealth. This is the House of Lords of the 21st century.

It is also noteworthy the House of Lords invited a worldwide expert, Dr. Meuer, who is not British, but German. In the absence of a Nobel Prize for computer science, the Lorraine King Memorial Lecture may become (why not?) one of the more prestigious events to honor great men and women advancing the computer industry.

Dr. Meuer told his audience about the TOP500 supercomputer project, which was launched at the University of Mannheim, Germany, in 1993. It is the only project in the world that has been successfully tracking and evaluating the supercomputer market for 20 years. Two TOP500 lists are published per year, one at the International Supercomputing Conference in Germany in June and one at the US-based Supercomputing Conference (SC) in November.

 

Professor the Lord Laird of Artigarvan

The distinguished audience learned that the UK ranked 4th in the TOP500 list of supercomputer-using countries and that France was the only European country with any capability to manufacture supercomputers. With true British humor, the Lords reaction is fittingly described by one blogger reporting the event:

Clearly more needs to be done by the likes of the UK or Germany to remain competitive in the Supercomputing stakes, which begged the question, (as posed later by an attendee), of whether these machines were nothing more than objects of geopolitical prestige, superiority and / or bragging rights, (e.g. My Supercomputer is faster than yours, so Nyah-nyah, nyah-nyah nyah-nyah!)

Lord Laird summarized this by saying that the supercomputer industry has “a certain lack of visibility,” adding ”if we don’t know who you are, or what it is you want, then that is entirely your own fault!

Next >> Soccer and Supercomputing

Soccer and Supercomputing

In hindsight, the words of Lord Laird suggest an appreciation for entrepreneurial spirit and for the great effort that has gone into bringing supercomputing to the world’s attention against skepticism and ironic smiles. Hans Meuer is a chess player and, like me, a soccer aficionado. In my recent conversation with him and Horst Gietl, Dr. Meuer asked me the first question:

Hans: Do you know what my favorite soccer team is?

I watch soccer on GolHD and Fox Soccer TV channels in California.

Miha: Bayern? Dortmund?

Hans: TSG Hoffenheim

Miha: Hoffen… what? Are they in Bundesliga 1? 

 

TSG Hoffenheimer “in the middle of nowhere” 🙂

Hans: Hoffenheim is a small village of 3,000 people about 15 miles south of Heidelberg. As you say in America, it is in the middle of nowhere. When I came here in 1974, the team played the lowest possible league in Germany, called Kreisliga, about seven levels below Bundesliga 1. Dietmar Hopp, one of co-founders of SAP, spent his childhood in Hoffenheim and played soccer. He invested in the team and in 2008 we entered Bundesliga 1.

[Note that Dietmar Hopp is on the Forbes list. He is the 185th richest individual in the world with a net worth of $6.5 billion.]

TOP500 Beginnings

Miha: After 20 years, the TOP500 list you helped create became a prestigious membership coveted by every supercomputer team, manufacturer and country anywhere in the world. How did it all start?

Hans: Erich Strohmaier and I came with the TOP500 idea at Mannheim University at the beginning of 1993. Later, we knew we needed US to buy the concept. I asked Jack Dongarra (father of Linpack) to become one of the authors from the very beginning; Horst Simon became an official author in the year 2000. We are four TOP500 authors: Meuer, Strohmaier, Dongarra, Simon.

Erich Strohmaier describes the TOP500 experience elsewhere:

“When we started this, it was to gather statistics for a small conference. We never expected the scope and popularity to grow as it did.”

It took two or three years for the list to find its footing. Initially, a number of manufacturers were reluctant to provide the necessary data….only those who were sure they would have a good showing submitted their data to us…Some companies don’t want to be listed because they see their systems as giving them a competitive advantage and don’t want their competitors to know either the size or type of their machines… some centers are conducting classified research and say, ‘Thou shall not publish our system.’

Some institutions are reluctant to devote their entire supercomputer to running the Linpack benchmark. Linpack, they said does not represent a real workload and therefore skews the performance levels.

“That’s all in the spirit of the game – we have a number of big players, but also many of the smaller players are very proud, and that shows how important HPC has become to the research community.”

Next >> TOP500 Continued

To get to where it is today, the TOP500 ran the same roller coaster as the TSG Hoffenheim soccer team. Hans Meuer and his partners created the TOP500 ex nihilo many years before Lord Laird’s witticism: “If we don’t know who you are, or what it is you want, then that is entirely your own fault!”

Regarding Linpack, sure the benchmark has limitations. It scales very well, but it is not a guide to select a supercomputer, per se. The ideal supercomputer for you is the one that runs the applications you are going to use best, within the maximum budget you have. And in terms of performance, a ranking of 450 can be much better for you than a ranking of 400.

The main virtue of Linpack is its proven ability to forecast the future of HPC performance as illustrated in the figure below.

 

The well known graph of Moore’s Law for Supercomputers

Miha: How would you explain its success today to group of young people?

Hans: The success of the TOP500 is based on the fact that it is the only tool available for evaluating the HPC market in 20 years and that we have introduced from the very beginning as a competition on different levels: between manufacturers, between countries, and between sites. People like competitions because they like sports.

ISC’13 will also host the second HPCAC-ISC Student Cluster Challenge, one of the most popular young people event aspiring to become HPC gurus. In April 2013, the Asia Student Cluster Challenge (ASCC) will hold a competition to decide the two teams who will travel to Leipzig, joining teams from the US, Scotland, South Africa, Germany, and Costa Rica.

The Ant Algorithms, non-centric HPC, Big Data, and Bosco

Miha: IDC predicted in 2010 that in 2013 “most of the biggest, baddest supercomputers are architectural clusters or x86 MPPs with bulked-up interconnects and support for MPI or PGAS languages.” IDC calls this “evolutionary change.” What about some revolutionary change?

Hans: If the revolutionary change means the availability of GPGPUs, then we already have the revolution. I doubt that there will be any manufacturer producing chips only for use in HPC-systems. The market is not big enough. But there will be developments like Intel’s MIC multiprocessors or further developments for GPGPUs, not to forget IBM and Fujitsu, that will drive the HPC performance increases, but in an evolutionary way.

Miha: You often said multicore processors will be significant in HPC. In what way?

Hans: Multicore processors are the basis of all HPC-systems worldwide. This will not change in the near future because currently it’s the only way to speed up system performance. Therefore, we will see HPC systems with millions of cores. The real problems with this extremely large number of cores are that:

  • Memory bandwidth can’t cope with the processor speed, and

  • Programming of millions of cores is becoming a nightmare.

Next >> Many and Multicore Continued

Miha: David Ungar from IBM, who is leading the research into “many-core” processors programming, proposed to do away with node synchronizations and determinism. He abolishes “our cherished assumption that we write programs that always get the exactly right answers.” Will this be applicable in HPC?

Horst: The title of your reference, Many Core processors: Everything You know (about Parallel Programming) Is Wrong!, is revealing. A few comments:

If you have an application that is running only on 100 cores with an acceptable performance and to run it on > 100 cores doesn’t bring any performance improvements, than I would say: the app is limited to 100 cores and there is nothing wrong with it.

Programming without any synchronization is counter-intuitive, not only from a mathematical point of view. If two cores are solving one problem in 99 percent of all cases there will be some synchronization between the two cores. Otherwise, the two are solving different problems that have nothing in common.

For example: If you and I are doing a search operation in the Web, then our requests have nothing to do with each other; no synchronization required.

But if any app has to search a tree and the search will be split onto two cores, with each core responsible for different branches of the tree, then at the end both cores have to synchronize to show me the result.

Miha: What about the ant colony optimization algorithm (ACO), and other algorithms which will be thriving in many-core processors? Project Renaissance, which is sponsored by IBM Research, Portland State University, and Vrije Universiteit Brussel, deals with this topic.

Horst: Many-core systems are not only suitable for ant algorithms. This seems to be an obvious coincidence. But many-core systems are the basis for most of the technical and scientific applications that exist; including big data algorithms.

Ant algorithms are suitable for optimization problems from combinatory, i.e., the Traveling Salesman problem. The theory behind it is heuristic optimization problems, meaning it cannot be guaranteed that there exist an optimal solution or the optimal solution cannot be found in an acceptable time.

If you look at Wikipedia, ants use the environment as a medium of communication. They exchange information indirectly by depositing pheromones, all detailing the status of their “work.” The information exchanged has a local scope, only an ant located where the pheromones were left has a notion of them. Even here the term ‘medium of communication’ is mandatory.

For me I only know one synchronization-free algorithm and that’s ‘video on demand’ because two viewers, even if they watch the same movie at the same time are totally independent of each other. And if the bandwidth for accessing the same copy of a movie twice is sufficient then I would say you don’t need any communication between the two viewers – on a system level.

Next >> Big Data and Many-Core

Miha: What about big data and many-core processors?

Horst: Multicore processors and GPUs have turned almost any computer into a heterogeneous parallel machine pushing compute clusters and clouds. It is not a secret that general multicore systems are often overloaded with big data analytics. One alternative would be data centrism, meaning the memory is in the center and the CPUs are at the periphery, thus avoiding data transfer. The realization of this alternative is not easy but 2020 seems to be a reasonable deadline.

Miha: IDC predicts in 2013 “HPC architectures will begin a long-term shift away from compute centrism.” Do you agree?

Hans: The long-term shift of HPC architectures away from compute centrism seems to be a must. Today, one has the CPUs/cores in the center and the memory at the periphery. This means one always has to transfer data to the center to do the calculation. But the data transfer is limited: the memory bottleneck. The existing HPC systems can only transfer less than one byte per floating point operation.

Miha: Have you heard of Bosco? We made this tool to make scientists more comfortable using clusters. Everyone prefers a Mac to working with a cluster. Do you see a need for it in HPC?

Hans: What we at ISC have heard from Bosco is really great and we will see how it will spread over the HPC community. It really seems to make life easier for researchers to submit their jobs to remote clusters. We will think of having a session about this topic at the ISC’14. We are absolutely sure that there is a need for such a tool in the HPC environment.

Miha: High throughput computing (HTC) recently made headlines as it contributed to Higgs particle big data research at CERN. Many think HTC and HPC are converging. How do you see it happening?

Hans: The problem is the word ‘converging.’ In the future there will be a lot of HPC applications (as it is today), where numerically intensive calculations are executed on a vast amount of data; i.e., a combustion calculation in an engine.

HTC calculations will operate on extremely large datasets but are executing, in general, only a few numerical calculations on them, i.e., take the search engines and the big data research at CERN for the Higgs particle.

Now the coupling – not the converging – between HTC and HPC is coming. In the future HTC and HPC will have a strong coupling for big science. You should attend ISC’13, where we have established a session exactly for these topics.

Miha: Have you seen the University of California San Diego (UCSD) press release where researchers used Bosco to link the HPC Gordon Supercomputer to the Open Science Grid (OSG), an HTC resource? The results improved in a spectacular manner.

Hans: I would love to cover this topic at ISC Big Data’13 conference in Heidelberg, September 25-26, 2013. Sverre Jarp from CERN is the conference chair. We have just begun preparing for this event.

Fascinating Leipzig

Miha: Regarding ISC’s venue this year, why Leipzig? It seems a town that inspires and supercomputing people are incurable dreamers.

 

Steven Black 2004.02, oil on canvas, 2004, 39’37” x 59’06” – courtesy Galerie Saheb New York Academy of Art – http://nyaa.edu/nyaa/exhibitions/past/leipzig.html

Hans: Spiegel Magazine says Leipzig is the new Berlin:

Berlin used to be Germany’s hippest city, but the once scruffy capital has long since succumbed to gentrification. The latest city to attract the creative class is the former East German industrial seat of Leipzig. Moving in by the thousands, they are lured by the euphoric buzz of cheap rent and youthful ingenuity.

Before the sun sets, it pierces the clouds once again as a glowing red orb. People stream from turn-of-the-century villas and communist-era concrete apartment complexes and rush to the park. Adventurers and hedonists, painters, students, punks and Internet entrepreneurs come alone and in groups, on bicycles and skateboards, with guitars and cases of beer tucked under their arms.”

 

Leipzig International Art Program – http://www.liap.eu/en/content/view/1/23/

In November 2012, The Green Globe designated the Congress Center Leipzig as the Best Congress and Convention Center in Europe. The ceremony took place at the Business Destinations Travel Awards 2012 in London. Watch the amazing slideshow to see why.

The ISC’13 website also has more information on the City of Leipzig.

Quintessential Leipzig 2013

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This