Adapteva Shows Off $99 Supercomputer Boards

By Tiffany Trader

April 23, 2013

Last week, Adapteva revealed the first production units of its $99 Linux “supercomputer.” Speaking at the Linux Collaboration Summit in San Francisco, California, CEO Andreas Olofsson announced the first batch of Parallella final form factor boards will be shipped to the chipmaker’s 6,300 Kickstarter supporters by this summer.

Inspired by Raspberry Pi’s success, Adapteva created Parallella to be “affordable, open, and easy to use” with the intent of democratizing parallel computing. The platform launched last fall with 5,000 backers purchasing 6,300 boards in four weeks via Kickstarter. Since Jan. 1, another 5,000 signed up to reserve their boards. Adapteva has spent the last six months working to deliver on its promise.

With less than five minutes to go in his 21-minute talk, Olofsson made the big reveal. The company had just received its very first boards, said the CEO, reaching inside his suit jacket to pull out both 16-core and a 64-core versions. The engineering team had to make a few tweaks with a soldering iron, but they were able to successfully run applications and read and write to the coprocessor.

“The hardware is looking great,” says the CEO. “Six months ago when we started this project, we said, we think we can put all this stuff on a credit card and we know it should cost a hundred dollars, but we don’t know if we can do it or not. It was six months of not knowing if we can really deliver on this project. We were confident, but not 100 percent – and just seeing it working, and coming very close on price point as well, it’s a good feeling.”

The credit card sized parallel computer consists of a dual-core ARM A9 processor, 1GB RAM, and either a 16-core or 64-core Epiphany Accelerator Chip. It’s outfitted with two USB 2.0 ports, Gigabit Ethernet, an SD Connector and a Micro HDMI connector. The Epiphany development toolkit is included at no extra charge.

Developed by Adapteva over the last four years, the Epiphany chips employ a scalable array of RISC processors that are programmable in C/C++. They are connected together with a fast on chip network within a single shared memory architecture.

The Parallella computer runs Ubuntu Linux. The 66-core version of the Parallella computer (that’s two A9 ARM cores + 64 RISC processors) is expected to deliver 90 gigaflops (comparable to a theoretical 45GHz CPU) while consuming about 5 watts under typical workloads.

Next >> The Parallel Future

In a video on Adapteva’s website, Olofsson further details the impetus for the project: “People have been doing single-threaded performance, having one processor running one task at at time and that’s worked great, but then we hit a frequency wall, and then we hit a memory bottleneck and things just stopped. So what we see for the last year is that performance hasn’t improved as much as it should.

“We’re now stalling and if we don’t do anything about it all those great strides we made over the last 30 years where things would get better every single year, they’re going to stop, and the answer is parallel performance performance. It’s the only way to really scale in terms of energy-efficiency, performance and cost.”

“Despite being so small, we managed to tape out a 64-core, 28-nanometer chip that works, and burns 2 watts at 100 gigaflops, making us the most efficient microprocessor company in the world,” noted the CEO in his talk last week. Even with these impressive claims, it took some time for the company to attract serious interest, but micro-financing via Kickstarter and the growing demand for energy-efficient systems have altered the playing field.

“The practical vision for today is heterogenous computing,” states Olofsson. “Let’s use the tools we have available today and let’s make a system that is more efficient than one thing can do. There’s no magical all-you-can-do tool. In our toolbox, we have big CPUs, x86, and ARM. With so much legacy in them, they’re not going away anytime soon.”

But there are other options, says the CEO, including FPGA logic, GPUs, analog, and asymmetric processing, where an ARM or x86 chip handles the bulk of application processing, while hundreds or even thousands of small RISC CPUs are set to one task such as floating point co-processing. This is where Parallella, with its heterogenous and scalable parallel hardware, fits in.

The future is undeniably parallel, Olofsson asserts, and meeting the challenges of this coming paradigm will require a concerted effort. He recommends a four-fold strategy, that includes rebuilding the computer ecosystem, rewriting billions of lines of code, re-educating millions of programmers, and rewriting the education system.

According to Olofsson, the only way to achieve these goals is to have a completely open approach, and that means open software and hardware. The platform should also be accessible, which means it needs to be inexpensive and easy to program.

As for Parallella’s killer app, early customer feedback indicates it’s all over the map. There’s interest in using the platform for software-defined radio, ray tracing/rendering, image processing, robotics, gaming, photography, media servers, signal processing as well as HPC. “It’s a computer you can use anywhere,” observes Olofsson.

Adapteva has a busy year ahead. In addition to filling the initial 6,300 orders, the company is also founding the Parallella Academic Program, building a sustainable supply model, and working toward massive parallelism with Parallella-1024. “We could put a thousand cores on a chip tomorrow, if someone wanted us to,” says Olofsson.

“The really good news is we have boards working…and we’re going to ship them this summer,” concludes the CEO.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This