Adapteva Shows Off $99 Supercomputer Boards

By Tiffany Trader

April 23, 2013

Last week, Adapteva revealed the first production units of its $99 Linux “supercomputer.” Speaking at the Linux Collaboration Summit in San Francisco, California, CEO Andreas Olofsson announced the first batch of Parallella final form factor boards will be shipped to the chipmaker’s 6,300 Kickstarter supporters by this summer.

Inspired by Raspberry Pi’s success, Adapteva created Parallella to be “affordable, open, and easy to use” with the intent of democratizing parallel computing. The platform launched last fall with 5,000 backers purchasing 6,300 boards in four weeks via Kickstarter. Since Jan. 1, another 5,000 signed up to reserve their boards. Adapteva has spent the last six months working to deliver on its promise.

With less than five minutes to go in his 21-minute talk, Olofsson made the big reveal. The company had just received its very first boards, said the CEO, reaching inside his suit jacket to pull out both 16-core and a 64-core versions. The engineering team had to make a few tweaks with a soldering iron, but they were able to successfully run applications and read and write to the coprocessor.

“The hardware is looking great,” says the CEO. “Six months ago when we started this project, we said, we think we can put all this stuff on a credit card and we know it should cost a hundred dollars, but we don’t know if we can do it or not. It was six months of not knowing if we can really deliver on this project. We were confident, but not 100 percent – and just seeing it working, and coming very close on price point as well, it’s a good feeling.”

The credit card sized parallel computer consists of a dual-core ARM A9 processor, 1GB RAM, and either a 16-core or 64-core Epiphany Accelerator Chip. It’s outfitted with two USB 2.0 ports, Gigabit Ethernet, an SD Connector and a Micro HDMI connector. The Epiphany development toolkit is included at no extra charge.

Developed by Adapteva over the last four years, the Epiphany chips employ a scalable array of RISC processors that are programmable in C/C++. They are connected together with a fast on chip network within a single shared memory architecture.

The Parallella computer runs Ubuntu Linux. The 66-core version of the Parallella computer (that’s two A9 ARM cores + 64 RISC processors) is expected to deliver 90 gigaflops (comparable to a theoretical 45GHz CPU) while consuming about 5 watts under typical workloads.

Next >> The Parallel Future

In a video on Adapteva’s website, Olofsson further details the impetus for the project: “People have been doing single-threaded performance, having one processor running one task at at time and that’s worked great, but then we hit a frequency wall, and then we hit a memory bottleneck and things just stopped. So what we see for the last year is that performance hasn’t improved as much as it should.

“We’re now stalling and if we don’t do anything about it all those great strides we made over the last 30 years where things would get better every single year, they’re going to stop, and the answer is parallel performance performance. It’s the only way to really scale in terms of energy-efficiency, performance and cost.”

“Despite being so small, we managed to tape out a 64-core, 28-nanometer chip that works, and burns 2 watts at 100 gigaflops, making us the most efficient microprocessor company in the world,” noted the CEO in his talk last week. Even with these impressive claims, it took some time for the company to attract serious interest, but micro-financing via Kickstarter and the growing demand for energy-efficient systems have altered the playing field.

“The practical vision for today is heterogenous computing,” states Olofsson. “Let’s use the tools we have available today and let’s make a system that is more efficient than one thing can do. There’s no magical all-you-can-do tool. In our toolbox, we have big CPUs, x86, and ARM. With so much legacy in them, they’re not going away anytime soon.”

But there are other options, says the CEO, including FPGA logic, GPUs, analog, and asymmetric processing, where an ARM or x86 chip handles the bulk of application processing, while hundreds or even thousands of small RISC CPUs are set to one task such as floating point co-processing. This is where Parallella, with its heterogenous and scalable parallel hardware, fits in.

The future is undeniably parallel, Olofsson asserts, and meeting the challenges of this coming paradigm will require a concerted effort. He recommends a four-fold strategy, that includes rebuilding the computer ecosystem, rewriting billions of lines of code, re-educating millions of programmers, and rewriting the education system.

According to Olofsson, the only way to achieve these goals is to have a completely open approach, and that means open software and hardware. The platform should also be accessible, which means it needs to be inexpensive and easy to program.

As for Parallella’s killer app, early customer feedback indicates it’s all over the map. There’s interest in using the platform for software-defined radio, ray tracing/rendering, image processing, robotics, gaming, photography, media servers, signal processing as well as HPC. “It’s a computer you can use anywhere,” observes Olofsson.

Adapteva has a busy year ahead. In addition to filling the initial 6,300 orders, the company is also founding the Parallella Academic Program, building a sustainable supply model, and working toward massive parallelism with Parallella-1024. “We could put a thousand cores on a chip tomorrow, if someone wanted us to,” says Olofsson.

“The really good news is we have boards working…and we’re going to ship them this summer,” concludes the CEO.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch bits onto glass with a ceramic coating. The “grey ceramic� Read more…

Weekly Wire Roundup: July 15-July 19, 2024

July 19, 2024

It's summertime (for most of us), and the HPC-related headlines aren't as plentiful as they once were. But not everything has to happen at high tide-- this week still had some waves! Idaho National Laboratory's Bitter Read more…

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…


Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers


Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

  • arrow
  • Click Here for More Headlines
  • arrow