The Week in HPC Research

By Tiffany Trader

April 25, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes advancements in petascale-era development environments; the challenges of energy-efficiency in HPC; optimizing computer science instruction; and a possible path to extreme heterogeneity.

A Scalable Development Environment for Petascale Era

The Juelich Supercomputing Centre (JSC) at Forschungszentrum Juelich GmbH, in Germany, has released the final scientific report detailing its efforts to develop “A scalable Development Environment for Peta-Scale Computing.” The goal of the project was to extend the Parallel Tools Platform (PTP) – an integrated development environment for parallel applications – to meet the needs of current-era petascale systems. PTP covers code analysis, performance tuning, parallel debugging and system monitoring.

The role of the Juelich Supercomputing Centre (JSC) was to provide a scalable system modeling solution for today’s supercomputers. This meant developing a new communication protocol for status data to be exchanged between the target remote system and the client running PTP. Remote support was essential as PTP provides transparent access to multiple remote systems via a unified interface.

The nature of the challenge is described thusly:

“The common requirement for all PTP components is that they have to interact with the remote supercomputer, e.g., applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time.”

The remainder of the paper describes the process by which JSC developed the new monitoring component and successfully integrated it into PTP. The solution is now being used on JSC’s BlueGene/Q system JUQUEEN, as well as its general purpose cluster JUROPA and its GPU cluster JUDGE. It’s also been successfully applied to Jaguar, the Cray supercomputer maintained by the Oak Ridge National Laboratory (now part of Titan), and various XSEDE machines, including the Kraken and Keeneland systems at the National Institute for Computational Sciences, the Lonestar and Ranger systems at Texas Advanced Computing Center, as well as Argonne National Laboratory’s Blue Gene/P and Q.

Next >> A Balancing Act

Energy-Efficiency: A Balancing Act

Another research paper released this week demonstrates novel energy savings strategies for parallel applications by way of point to point communication phases.

“Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale,” state the four-person research team (from Iowa State University and Old Dominion University, Norfolk, Va.).

Fig. 2. State diagram for runtime procedure to apply energy savings efficiently. The transitions are labeled with Lt, where L takes a value of the first 11 letters of the alphabet. The transition of a state into itself (At,Et,Ft,It) indicate ongoing state action.

The authors explore several frequency scaling strategies aimed at saving energy:

“In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This paper advocates for a runtime assessment of such overheads by means of characterizing point-to-point communications into phases followed by analyzing the time gaps between the communication calls.”

The tests employ NAS parallel benchmark problems and calculations performed by the quantum chemistry software package GAMESS. In the final analysis, the team achieved close to the maximum energy savings, however there was a small performance loss of 2 percent.

Their work appears in the latest edition of the Journal of Parallel and Distributed Computing.

Next >> Greener Supercomputing

A Power Efficient General Purpose Supercomputer

The power wall is one of the biggest challenges facing the HPC community. While these mega-machines are essential to research and business, they also are also big energy consumers. This issue, however is getting a lot of attention, and optimizing performance-per-watt has become a key goal of the computing industry at all levels.

A team of UK researchers have written about the advances that will be needed over the coming years, observing that achieving a “pervasively energy-efficient” supercomputing architecture will require improvements in multiple fields. They believe that the LOEWE-CSC supercomputer at the University of Frankfurt, Germany, has already made a lot of headway in meeting these goals. That system, they write, “is setting new standards in environmental compatibility as well as energy and cooling efficiency for high-performance and general-purpose computing.”

The team notes that GPUs provide more compute performance per watt versus standard processors, while “a balanced hardware configuration ensures that most of the compute power is available to the user when he employs optimized applications.” As well: “clever algorithms enable the user to fully exploit the computational potential and avoids to waste power when the processors idles, which is often a cause of inefficient programming.”

The LOEWE-CSC supercomputer achieved 740 MFlops-per-watt on a Linpack benchmark run, earning it an eighth place finish on the Green500 list of November 2010. A good metric for the time, it has since been surpassed by more energy-efficient systems and has fallen to 109th position on the most recent Green500 list (November 2012).

The work appears in proceedings from the 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 2013.

Next >> Evaluating Student Progress

Evaluating Student Understanding of Core Concepts in Computer Architecture

Four researchers from across the country have written a paper that is sure to resonate with anyone who’s ever taken or taught a computer science course. In “Evaluating Student Understanding of Core Concepts in Computer Architecture,” the authors begin with the assertion: “Many studies have demonstrated that students tend to learn less than instructors expect in CS1.”

The researchers wondered whether these findings would hold true for subsequent, upper-level computer science courses, and set out to test their hypothesis.

Multiple computer architecture instructors developed basic concept questions for upper-division computer architecture courses. The questions were designed to test students’ minimum proficiency levels post-course and the expectation was that every student would be able to answer the questions. The tests were used to assess four separate computer architecture courses (taught by four different teachers) at two institutions, a large public university and a small liberal arts college.

The results in the authors’ words: “Our results show that students in these courses were indeed not learning as much as the instructors expected, performing poorly overall: the per-question average was only 56%, with many questions showing no statistically significant improvement from precourse to post-course. While these results follow the trend from CS1 courses, they are still somewhat surprising given that the courses studied were taught using research-based pedagogy that is known to be effective across the CS curriculum.”

The paper includes a discussion of the findings as well as recommendations for further study. While this may come as “bad news,” pinpointing the most difficult subject matter will help course instructors refine their lessons (see the Recommendations section for more on this topic).

It’s no question these findings are significant – one wonders how surprising they will be to the HPC or larger computer science community.

This paper opens the door for further discourse on this important subject.

Next >> Extreme Heterogeneity

Extreme Heterogeneity

The last decade has seen continuing push toward heterogenous architectures, but is there a more extreme form of heterogeneity still to come? There is according to one group of computer scientists. The diverse research team, with affiliations that include Microsoft as well as US, Mexican, European and Asian universities, presented a paper on the subject at the International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN’ 2012) in San Marcos, Texas, December 13–15, 2012.

In “Introducing the Extreme Heterogeneous Architecture,” they write:

“The computer industry is moving towards two extremes: extremely high-performance high-throughput cloud computing, and low-power mobile computing. Cloud computing, while providing high performance, is very costly. Google and Microsoft Bing spend billions of dollars each year to maintain their server farms, mainly due to the high power bills. On the other hand, mobile computing is under a very tight energy budget, but yet the end users demand ever increasing performance on these devices.”

Conventional architectures have diverged to meet the needs of multiple user groups. But wouldn’t it be ideal if there was a way to deliver high-performance and low power consumption at the same time? The authors set out to explore a novel architecture model that addresses both these extremes, setting the stage for the Extremely Heterogeneous Architecture (EHA) project.

“EHA is a novel architecture that incorporates both general-purpose and specialized cores on the same chip,” the authors explain. “The general-purpose cores take care of generic control and computation. On the other hand, the specialized cores, including GPU, hard accelerators (ASIC accelerators), and soft accelerators (FPGAs), are designed for accelerating frequently used or heavy weight applications. When acceleration is not needed, the specialized cores are turned off to reduce power consumption. We demonstrate that EHA is able to improve performance through acceleration, and at the same time reduce power consumption.”

As a heterogeneous architecture, EHA is capable of accelerating heterogeneous workloads on the same chip. This is useful because it is often the case that datacenters (either in-house or in “the cloud”) provide many services – media streaming, searching, indexing, scientific computations, and so on.

The EHA project has two main goals. The first one is to design a chip that is suitable for many different cloud services, thereby greatly reducing both recurring and non-recurring costs of datacenters or clouds. Second, they plan to implement a light-weight EHA for use with mobile devices, with the aim of optimizing user experience under tight power constraints.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This