The Week in HPC Research

By Tiffany Trader

April 25, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes advancements in petascale-era development environments; the challenges of energy-efficiency in HPC; optimizing computer science instruction; and a possible path to extreme heterogeneity.

A Scalable Development Environment for Petascale Era

The Juelich Supercomputing Centre (JSC) at Forschungszentrum Juelich GmbH, in Germany, has released the final scientific report detailing its efforts to develop “A scalable Development Environment for Peta-Scale Computing.” The goal of the project was to extend the Parallel Tools Platform (PTP) – an integrated development environment for parallel applications – to meet the needs of current-era petascale systems. PTP covers code analysis, performance tuning, parallel debugging and system monitoring.

The role of the Juelich Supercomputing Centre (JSC) was to provide a scalable system modeling solution for today’s supercomputers. This meant developing a new communication protocol for status data to be exchanged between the target remote system and the client running PTP. Remote support was essential as PTP provides transparent access to multiple remote systems via a unified interface.

The nature of the challenge is described thusly:

“The common requirement for all PTP components is that they have to interact with the remote supercomputer, e.g., applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time.”

The remainder of the paper describes the process by which JSC developed the new monitoring component and successfully integrated it into PTP. The solution is now being used on JSC’s BlueGene/Q system JUQUEEN, as well as its general purpose cluster JUROPA and its GPU cluster JUDGE. It’s also been successfully applied to Jaguar, the Cray supercomputer maintained by the Oak Ridge National Laboratory (now part of Titan), and various XSEDE machines, including the Kraken and Keeneland systems at the National Institute for Computational Sciences, the Lonestar and Ranger systems at Texas Advanced Computing Center, as well as Argonne National Laboratory’s Blue Gene/P and Q.

Next >> A Balancing Act

Energy-Efficiency: A Balancing Act

Another research paper released this week demonstrates novel energy savings strategies for parallel applications by way of point to point communication phases.

“Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale,” state the four-person research team (from Iowa State University and Old Dominion University, Norfolk, Va.).

Fig. 2. State diagram for runtime procedure to apply energy savings efficiently. The transitions are labeled with Lt, where L takes a value of the first 11 letters of the alphabet. The transition of a state into itself (At,Et,Ft,It) indicate ongoing state action.

The authors explore several frequency scaling strategies aimed at saving energy:

“In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This paper advocates for a runtime assessment of such overheads by means of characterizing point-to-point communications into phases followed by analyzing the time gaps between the communication calls.”

The tests employ NAS parallel benchmark problems and calculations performed by the quantum chemistry software package GAMESS. In the final analysis, the team achieved close to the maximum energy savings, however there was a small performance loss of 2 percent.

Their work appears in the latest edition of the Journal of Parallel and Distributed Computing.

Next >> Greener Supercomputing

A Power Efficient General Purpose Supercomputer

The power wall is one of the biggest challenges facing the HPC community. While these mega-machines are essential to research and business, they also are also big energy consumers. This issue, however is getting a lot of attention, and optimizing performance-per-watt has become a key goal of the computing industry at all levels.

A team of UK researchers have written about the advances that will be needed over the coming years, observing that achieving a “pervasively energy-efficient” supercomputing architecture will require improvements in multiple fields. They believe that the LOEWE-CSC supercomputer at the University of Frankfurt, Germany, has already made a lot of headway in meeting these goals. That system, they write, “is setting new standards in environmental compatibility as well as energy and cooling efficiency for high-performance and general-purpose computing.”

The team notes that GPUs provide more compute performance per watt versus standard processors, while “a balanced hardware configuration ensures that most of the compute power is available to the user when he employs optimized applications.” As well: “clever algorithms enable the user to fully exploit the computational potential and avoids to waste power when the processors idles, which is often a cause of inefficient programming.”

The LOEWE-CSC supercomputer achieved 740 MFlops-per-watt on a Linpack benchmark run, earning it an eighth place finish on the Green500 list of November 2010. A good metric for the time, it has since been surpassed by more energy-efficient systems and has fallen to 109th position on the most recent Green500 list (November 2012).

The work appears in proceedings from the 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 2013.

Next >> Evaluating Student Progress

Evaluating Student Understanding of Core Concepts in Computer Architecture

Four researchers from across the country have written a paper that is sure to resonate with anyone who’s ever taken or taught a computer science course. In “Evaluating Student Understanding of Core Concepts in Computer Architecture,” the authors begin with the assertion: “Many studies have demonstrated that students tend to learn less than instructors expect in CS1.”

The researchers wondered whether these findings would hold true for subsequent, upper-level computer science courses, and set out to test their hypothesis.

Multiple computer architecture instructors developed basic concept questions for upper-division computer architecture courses. The questions were designed to test students’ minimum proficiency levels post-course and the expectation was that every student would be able to answer the questions. The tests were used to assess four separate computer architecture courses (taught by four different teachers) at two institutions, a large public university and a small liberal arts college.

The results in the authors’ words: “Our results show that students in these courses were indeed not learning as much as the instructors expected, performing poorly overall: the per-question average was only 56%, with many questions showing no statistically significant improvement from precourse to post-course. While these results follow the trend from CS1 courses, they are still somewhat surprising given that the courses studied were taught using research-based pedagogy that is known to be effective across the CS curriculum.”

The paper includes a discussion of the findings as well as recommendations for further study. While this may come as “bad news,” pinpointing the most difficult subject matter will help course instructors refine their lessons (see the Recommendations section for more on this topic).

It’s no question these findings are significant – one wonders how surprising they will be to the HPC or larger computer science community.

This paper opens the door for further discourse on this important subject.

Next >> Extreme Heterogeneity

Extreme Heterogeneity

The last decade has seen continuing push toward heterogenous architectures, but is there a more extreme form of heterogeneity still to come? There is according to one group of computer scientists. The diverse research team, with affiliations that include Microsoft as well as US, Mexican, European and Asian universities, presented a paper on the subject at the International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN’ 2012) in San Marcos, Texas, December 13–15, 2012.

In “Introducing the Extreme Heterogeneous Architecture,” they write:

“The computer industry is moving towards two extremes: extremely high-performance high-throughput cloud computing, and low-power mobile computing. Cloud computing, while providing high performance, is very costly. Google and Microsoft Bing spend billions of dollars each year to maintain their server farms, mainly due to the high power bills. On the other hand, mobile computing is under a very tight energy budget, but yet the end users demand ever increasing performance on these devices.”

Conventional architectures have diverged to meet the needs of multiple user groups. But wouldn’t it be ideal if there was a way to deliver high-performance and low power consumption at the same time? The authors set out to explore a novel architecture model that addresses both these extremes, setting the stage for the Extremely Heterogeneous Architecture (EHA) project.

“EHA is a novel architecture that incorporates both general-purpose and specialized cores on the same chip,” the authors explain. “The general-purpose cores take care of generic control and computation. On the other hand, the specialized cores, including GPU, hard accelerators (ASIC accelerators), and soft accelerators (FPGAs), are designed for accelerating frequently used or heavy weight applications. When acceleration is not needed, the specialized cores are turned off to reduce power consumption. We demonstrate that EHA is able to improve performance through acceleration, and at the same time reduce power consumption.”

As a heterogeneous architecture, EHA is capable of accelerating heterogeneous workloads on the same chip. This is useful because it is often the case that datacenters (either in-house or in “the cloud”) provide many services – media streaming, searching, indexing, scientific computations, and so on.

The EHA project has two main goals. The first one is to design a chip that is suitable for many different cloud services, thereby greatly reducing both recurring and non-recurring costs of datacenters or clouds. Second, they plan to implement a light-weight EHA for use with mobile devices, with the aim of optimizing user experience under tight power constraints.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to provide what the companies call the “the highest performance Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology cr Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This