The Week in HPC Research

By Tiffany Trader

May 2, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the latest CAREER award recipient; the push to bring parallel computing to the classroom; HPC in accelerator science; the emerging Many-Task Computing paradigm; and a unified programming model for data-intensive computing.

Palermo Wins NSF CAREER Award

Texas A&M University researcher Dr. Sam Palermo has won the prestigious CAREER award for his proposal, “Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures.”

An assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University, Palermo developed energy-efficient transceivers for a unified inter- and intra-chip photonic interconnect architecture. This is significant because conventional off-chip electrical interconnects will not be able to increase their pin-bandwidths significantly due to channel-loss limitations, but silicon photonic interconnects display distance-independent connectivity, where pin-bandwidth scales with the degree of wavelength-division multiplexing (WDM).

The project sets the stage for an explosion in interconnect bandwidth capacity, according to Palermo. He believes that these photonic interconnect architectures have the power to revolutionize a wide-range of computational devices. Future smart mobile devices capable of terascale performance, multi-channel high-resolution magnetic resonance imaging, and even exascale supercomputing are all potential targets. What’s more the proposed technology reduces the energy demand of these complex systems.

The CAREER award was established by the National Science Foundation to recognize junior faculty to advance the discovery process and inspire game-changing thinking.

Next >> The Parallel Mandate

The Parallel Mandate

The large number of research pieces dedicated to computer science education this week highlights the importance of an updated and relevant curriculum. To that end, the importance of parallel computing cannot be ignored.

“How can parallel computing topics be incorporated into core courses that are taken by the majority of undergraduate students?” asks a team of researchers from Knox College, Portland State University and Lewis & Clark College.

Their paper outlines the benefits of using GPUs to teach parallel programming. The authors describe how GPU computing with CUDA was brought into the core undergraduate computer organization course at two different colleges.

“We have found that even though programming in CUDA is not necessarily easy, programmer control and performance impact seem to motivate students to acquire an understanding of parallel architectures,” they write.

A North Carolina-based group of researchers add their voice to the discussion, advocating the use of higher-level abstractions to teach parallel computing. They argue that it is no longer feasible for students to be trained solely in the programming of single processor systems. Students at all levels must be taught the essentials of multicore programming.

Their paper describes two methods:

“The first approach uses a new software environment that creates a higher level of abstraction for parallel and distributed programming based upon a pattern programming approach. The second approach uses compiler directives to describe how a program should be parallelized.”

A team of researchers from the University of Central Florida are also emphasizing the necessity of a computer science curriculum refresh that includes parallel techniques. More specifically, they advise introducing parallel programming across the undergraduate curriculum through an interdisciplinary course on computational modeling.

The core message is the same:

“The end of exponential growth in the computing power available on a single processing element has given birth to an era of massively parallel computing where every programmer must be trained in the art and science of parallel programming,” they write.

Furthermore:

“The construction of computational models has become a fundamental process in the discovery process for all scientific disciplines, and there is little instructional support to enable the next generation of scientists and engineers to effectively employ massively parallel high-performance computing machines in their scientific process.”

The authors argue that because computational modeling straddles several key technology waves, namely big data, computational statistics, and model checking, it is therefore a particularly good choice for introducing today’s students to parallel programming methods.

Next >> Accelerator Science

High Performance Computing in Accelerator Science

A collection of researchers from Lawrence Berkeley National Laboratory (LBNL) and Los Alamos National Laboratory (LANL), led by LBNL’s Robert Ryne, have published a poster highlighting the importance of accelerators (think particles not processors) to science.

Particle accelerators contribute to a wide range of disciplines among them materials science, chemistry, biosciences, high energy physics, and nuclear physics. Marvels of engineering, these machines have important applications in energy, the environment, and national security. Their use in drug design and other medical therapies has tremendous value for quality of life.

The progress of accelerator science and technology is directly tied to advances in computer science. Accelerator modeling brings about cost and risk reduction as well as design optimization and the testing of new ideas.

As for future challenges and opportunities, the paper notes the potential for accelerators to be used as light sources in multiple implementations, including advanced injectors, beam manipulation, novel seeding schemes and more. Laser-Plasma Accelerators (LPA’s) are on-track to revolutionize accelerator technology. They have a place in enhanced beam quality control, 10 GeV stages, and one day may lead to an LPA collider. Researchers are also exploring new accelerator designs, for example electron-ion colliders, FRIB, and muon accelerators.

On the computational modeling side, there are challenges with regard to programming at scale and extracting the performance potential of multicore and hybrid machines. Extreme scale computing affects all aspects of HPC: the algorithms, the I/O, data analysis, visualization and more. Other important points raised are using statistical methods for fast emulators and bringing HPC into the control room for near-real-time feedback to experiments.

Next >> Many-Task Computing – A New Paradigm

The New Many-Task Computing (MTC) Paradigm

The traditional classifications of High-Throughput Computing (HTC) and High-Performance Computing (HPC) are no longer adequate, according to a team of researchers from the National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (KISTI). The reason? An emerging set of applications that require millions or even billions of tasks (communicating each other through files) to be processed with relatively short per task execution times. The researchers refer to this new application segment as Many-Task Computing.

Traditional middleware systems that have been widely used in HTC or HPC are not suitable for supporting MTC applications, therefore a new protocol is needed to bridge the gap between HTC and HPC, they argue. They’ve authored a paper describing the key MTC characteristics and presenting a middleware system to fully support these applications.

Some of the unique characteristics of this new computing paradigm are as follows:

  • A very large number of tasks (i.e. millions or even billions of tasks).
  • Relatively short per task execution times (i.e. seconds to minutes long).
  • Data intensive tasks (i.e., tens of MB of I/O per CPU second).
  • A large variance of task execution times (i.e., ranging from hundreds of milliseconds to hours).
  • Communication-intensive, however, not based on message passing interface (such as MPI) but through files.

“We hope our research can give an insight for a next generation distributed middleware system that can support the most challenging scientific applications,” they write.

Next >> A Unified Programming Model for Big Data

Data-Focused Unified Programming Model

Faced with the need to process large volumes of data, researchers have several computational paradigms to select from, including batch processing, iterative, interactive, memory-based, data flow oriented, relational, structured, among others. These different techniques are mostly incompatible with each other, but what if there was a unified framework that could support these different approaches? That’s exactly what research duo Maneesh Varshney and Vishwa Goudar from the Computer Science Department of the University of California, Los Angeles, had in mind when they developed Blue.

Figure 1: Blue framework provides a generic programming model for developing diverse cluster computing paradigms (Source)

The researchers lay out their findings in a new technical report, “Blue: A Unified Programming Model for Diverse Data-intensive Cloud Computing Paradigms.”

They write: “The motivation for this paper is to ease the development of new cluster applications, by introducing an intermediate layer (Figure 1) between resource management and applications. This layer [serves as] a generic programming model upon which any arbitrary cluster application can be built. Not only will this significantly diminish the cost of developing applications, the users will be able to easily select the computation paradigm that best meets their needs.”

In developing the Blue framework and programming model, the researchers aimed for a solution that was neither too low-level and difficult to implement, nor too high-level and fixed. The paper includes an outline for implementation strategy, and points out the framework’s key strengths (notably efficiency and fault-tolerance for cluster programs) and limitations (while it targets data-intensive computational problems, it is not the best choice for task parallelism).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This