The Week in HPC Research

By Tiffany Trader

May 2, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the latest CAREER award recipient; the push to bring parallel computing to the classroom; HPC in accelerator science; the emerging Many-Task Computing paradigm; and a unified programming model for data-intensive computing.

Palermo Wins NSF CAREER Award

Texas A&M University researcher Dr. Sam Palermo has won the prestigious CAREER award for his proposal, “Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures.”

An assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University, Palermo developed energy-efficient transceivers for a unified inter- and intra-chip photonic interconnect architecture. This is significant because conventional off-chip electrical interconnects will not be able to increase their pin-bandwidths significantly due to channel-loss limitations, but silicon photonic interconnects display distance-independent connectivity, where pin-bandwidth scales with the degree of wavelength-division multiplexing (WDM).

The project sets the stage for an explosion in interconnect bandwidth capacity, according to Palermo. He believes that these photonic interconnect architectures have the power to revolutionize a wide-range of computational devices. Future smart mobile devices capable of terascale performance, multi-channel high-resolution magnetic resonance imaging, and even exascale supercomputing are all potential targets. What’s more the proposed technology reduces the energy demand of these complex systems.

The CAREER award was established by the National Science Foundation to recognize junior faculty to advance the discovery process and inspire game-changing thinking.

Next >> The Parallel Mandate

The Parallel Mandate

The large number of research pieces dedicated to computer science education this week highlights the importance of an updated and relevant curriculum. To that end, the importance of parallel computing cannot be ignored.

“How can parallel computing topics be incorporated into core courses that are taken by the majority of undergraduate students?” asks a team of researchers from Knox College, Portland State University and Lewis & Clark College.

Their paper outlines the benefits of using GPUs to teach parallel programming. The authors describe how GPU computing with CUDA was brought into the core undergraduate computer organization course at two different colleges.

“We have found that even though programming in CUDA is not necessarily easy, programmer control and performance impact seem to motivate students to acquire an understanding of parallel architectures,” they write.

A North Carolina-based group of researchers add their voice to the discussion, advocating the use of higher-level abstractions to teach parallel computing. They argue that it is no longer feasible for students to be trained solely in the programming of single processor systems. Students at all levels must be taught the essentials of multicore programming.

Their paper describes two methods:

“The first approach uses a new software environment that creates a higher level of abstraction for parallel and distributed programming based upon a pattern programming approach. The second approach uses compiler directives to describe how a program should be parallelized.”

A team of researchers from the University of Central Florida are also emphasizing the necessity of a computer science curriculum refresh that includes parallel techniques. More specifically, they advise introducing parallel programming across the undergraduate curriculum through an interdisciplinary course on computational modeling.

The core message is the same:

“The end of exponential growth in the computing power available on a single processing element has given birth to an era of massively parallel computing where every programmer must be trained in the art and science of parallel programming,” they write.

Furthermore:

“The construction of computational models has become a fundamental process in the discovery process for all scientific disciplines, and there is little instructional support to enable the next generation of scientists and engineers to effectively employ massively parallel high-performance computing machines in their scientific process.”

The authors argue that because computational modeling straddles several key technology waves, namely big data, computational statistics, and model checking, it is therefore a particularly good choice for introducing today’s students to parallel programming methods.

Next >> Accelerator Science

High Performance Computing in Accelerator Science

A collection of researchers from Lawrence Berkeley National Laboratory (LBNL) and Los Alamos National Laboratory (LANL), led by LBNL’s Robert Ryne, have published a poster highlighting the importance of accelerators (think particles not processors) to science.

Particle accelerators contribute to a wide range of disciplines among them materials science, chemistry, biosciences, high energy physics, and nuclear physics. Marvels of engineering, these machines have important applications in energy, the environment, and national security. Their use in drug design and other medical therapies has tremendous value for quality of life.

The progress of accelerator science and technology is directly tied to advances in computer science. Accelerator modeling brings about cost and risk reduction as well as design optimization and the testing of new ideas.

As for future challenges and opportunities, the paper notes the potential for accelerators to be used as light sources in multiple implementations, including advanced injectors, beam manipulation, novel seeding schemes and more. Laser-Plasma Accelerators (LPA’s) are on-track to revolutionize accelerator technology. They have a place in enhanced beam quality control, 10 GeV stages, and one day may lead to an LPA collider. Researchers are also exploring new accelerator designs, for example electron-ion colliders, FRIB, and muon accelerators.

On the computational modeling side, there are challenges with regard to programming at scale and extracting the performance potential of multicore and hybrid machines. Extreme scale computing affects all aspects of HPC: the algorithms, the I/O, data analysis, visualization and more. Other important points raised are using statistical methods for fast emulators and bringing HPC into the control room for near-real-time feedback to experiments.

Next >> Many-Task Computing – A New Paradigm

The New Many-Task Computing (MTC) Paradigm

The traditional classifications of High-Throughput Computing (HTC) and High-Performance Computing (HPC) are no longer adequate, according to a team of researchers from the National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (KISTI). The reason? An emerging set of applications that require millions or even billions of tasks (communicating each other through files) to be processed with relatively short per task execution times. The researchers refer to this new application segment as Many-Task Computing.

Traditional middleware systems that have been widely used in HTC or HPC are not suitable for supporting MTC applications, therefore a new protocol is needed to bridge the gap between HTC and HPC, they argue. They’ve authored a paper describing the key MTC characteristics and presenting a middleware system to fully support these applications.

Some of the unique characteristics of this new computing paradigm are as follows:

  • A very large number of tasks (i.e. millions or even billions of tasks).
  • Relatively short per task execution times (i.e. seconds to minutes long).
  • Data intensive tasks (i.e., tens of MB of I/O per CPU second).
  • A large variance of task execution times (i.e., ranging from hundreds of milliseconds to hours).
  • Communication-intensive, however, not based on message passing interface (such as MPI) but through files.

“We hope our research can give an insight for a next generation distributed middleware system that can support the most challenging scientific applications,” they write.

Next >> A Unified Programming Model for Big Data

Data-Focused Unified Programming Model

Faced with the need to process large volumes of data, researchers have several computational paradigms to select from, including batch processing, iterative, interactive, memory-based, data flow oriented, relational, structured, among others. These different techniques are mostly incompatible with each other, but what if there was a unified framework that could support these different approaches? That’s exactly what research duo Maneesh Varshney and Vishwa Goudar from the Computer Science Department of the University of California, Los Angeles, had in mind when they developed Blue.

Figure 1: Blue framework provides a generic programming model for developing diverse cluster computing paradigms (Source)

The researchers lay out their findings in a new technical report, “Blue: A Unified Programming Model for Diverse Data-intensive Cloud Computing Paradigms.”

They write: “The motivation for this paper is to ease the development of new cluster applications, by introducing an intermediate layer (Figure 1) between resource management and applications. This layer [serves as] a generic programming model upon which any arbitrary cluster application can be built. Not only will this significantly diminish the cost of developing applications, the users will be able to easily select the computation paradigm that best meets their needs.”

In developing the Blue framework and programming model, the researchers aimed for a solution that was neither too low-level and difficult to implement, nor too high-level and fixed. The paper includes an outline for implementation strategy, and points out the framework’s key strengths (notably efficiency and fault-tolerance for cluster programs) and limitations (while it targets data-intensive computational problems, it is not the best choice for task parallelism).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This