The Week in HPC Research

By Tiffany Trader

May 2, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the latest CAREER award recipient; the push to bring parallel computing to the classroom; HPC in accelerator science; the emerging Many-Task Computing paradigm; and a unified programming model for data-intensive computing.

Palermo Wins NSF CAREER Award

Texas A&M University researcher Dr. Sam Palermo has won the prestigious CAREER award for his proposal, “Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures.”

An assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University, Palermo developed energy-efficient transceivers for a unified inter- and intra-chip photonic interconnect architecture. This is significant because conventional off-chip electrical interconnects will not be able to increase their pin-bandwidths significantly due to channel-loss limitations, but silicon photonic interconnects display distance-independent connectivity, where pin-bandwidth scales with the degree of wavelength-division multiplexing (WDM).

The project sets the stage for an explosion in interconnect bandwidth capacity, according to Palermo. He believes that these photonic interconnect architectures have the power to revolutionize a wide-range of computational devices. Future smart mobile devices capable of terascale performance, multi-channel high-resolution magnetic resonance imaging, and even exascale supercomputing are all potential targets. What’s more the proposed technology reduces the energy demand of these complex systems.

The CAREER award was established by the National Science Foundation to recognize junior faculty to advance the discovery process and inspire game-changing thinking.

Next >> The Parallel Mandate

The Parallel Mandate

The large number of research pieces dedicated to computer science education this week highlights the importance of an updated and relevant curriculum. To that end, the importance of parallel computing cannot be ignored.

“How can parallel computing topics be incorporated into core courses that are taken by the majority of undergraduate students?” asks a team of researchers from Knox College, Portland State University and Lewis & Clark College.

Their paper outlines the benefits of using GPUs to teach parallel programming. The authors describe how GPU computing with CUDA was brought into the core undergraduate computer organization course at two different colleges.

“We have found that even though programming in CUDA is not necessarily easy, programmer control and performance impact seem to motivate students to acquire an understanding of parallel architectures,” they write.

A North Carolina-based group of researchers add their voice to the discussion, advocating the use of higher-level abstractions to teach parallel computing. They argue that it is no longer feasible for students to be trained solely in the programming of single processor systems. Students at all levels must be taught the essentials of multicore programming.

Their paper describes two methods:

“The first approach uses a new software environment that creates a higher level of abstraction for parallel and distributed programming based upon a pattern programming approach. The second approach uses compiler directives to describe how a program should be parallelized.”

A team of researchers from the University of Central Florida are also emphasizing the necessity of a computer science curriculum refresh that includes parallel techniques. More specifically, they advise introducing parallel programming across the undergraduate curriculum through an interdisciplinary course on computational modeling.

The core message is the same:

“The end of exponential growth in the computing power available on a single processing element has given birth to an era of massively parallel computing where every programmer must be trained in the art and science of parallel programming,” they write.

Furthermore:

“The construction of computational models has become a fundamental process in the discovery process for all scientific disciplines, and there is little instructional support to enable the next generation of scientists and engineers to effectively employ massively parallel high-performance computing machines in their scientific process.”

The authors argue that because computational modeling straddles several key technology waves, namely big data, computational statistics, and model checking, it is therefore a particularly good choice for introducing today’s students to parallel programming methods.

Next >> Accelerator Science

High Performance Computing in Accelerator Science

A collection of researchers from Lawrence Berkeley National Laboratory (LBNL) and Los Alamos National Laboratory (LANL), led by LBNL’s Robert Ryne, have published a poster highlighting the importance of accelerators (think particles not processors) to science.

Particle accelerators contribute to a wide range of disciplines among them materials science, chemistry, biosciences, high energy physics, and nuclear physics. Marvels of engineering, these machines have important applications in energy, the environment, and national security. Their use in drug design and other medical therapies has tremendous value for quality of life.

The progress of accelerator science and technology is directly tied to advances in computer science. Accelerator modeling brings about cost and risk reduction as well as design optimization and the testing of new ideas.

As for future challenges and opportunities, the paper notes the potential for accelerators to be used as light sources in multiple implementations, including advanced injectors, beam manipulation, novel seeding schemes and more. Laser-Plasma Accelerators (LPA’s) are on-track to revolutionize accelerator technology. They have a place in enhanced beam quality control, 10 GeV stages, and one day may lead to an LPA collider. Researchers are also exploring new accelerator designs, for example electron-ion colliders, FRIB, and muon accelerators.

On the computational modeling side, there are challenges with regard to programming at scale and extracting the performance potential of multicore and hybrid machines. Extreme scale computing affects all aspects of HPC: the algorithms, the I/O, data analysis, visualization and more. Other important points raised are using statistical methods for fast emulators and bringing HPC into the control room for near-real-time feedback to experiments.

Next >> Many-Task Computing – A New Paradigm

The New Many-Task Computing (MTC) Paradigm

The traditional classifications of High-Throughput Computing (HTC) and High-Performance Computing (HPC) are no longer adequate, according to a team of researchers from the National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (KISTI). The reason? An emerging set of applications that require millions or even billions of tasks (communicating each other through files) to be processed with relatively short per task execution times. The researchers refer to this new application segment as Many-Task Computing.

Traditional middleware systems that have been widely used in HTC or HPC are not suitable for supporting MTC applications, therefore a new protocol is needed to bridge the gap between HTC and HPC, they argue. They’ve authored a paper describing the key MTC characteristics and presenting a middleware system to fully support these applications.

Some of the unique characteristics of this new computing paradigm are as follows:

  • A very large number of tasks (i.e. millions or even billions of tasks).
  • Relatively short per task execution times (i.e. seconds to minutes long).
  • Data intensive tasks (i.e., tens of MB of I/O per CPU second).
  • A large variance of task execution times (i.e., ranging from hundreds of milliseconds to hours).
  • Communication-intensive, however, not based on message passing interface (such as MPI) but through files.

“We hope our research can give an insight for a next generation distributed middleware system that can support the most challenging scientific applications,” they write.

Next >> A Unified Programming Model for Big Data

Data-Focused Unified Programming Model

Faced with the need to process large volumes of data, researchers have several computational paradigms to select from, including batch processing, iterative, interactive, memory-based, data flow oriented, relational, structured, among others. These different techniques are mostly incompatible with each other, but what if there was a unified framework that could support these different approaches? That’s exactly what research duo Maneesh Varshney and Vishwa Goudar from the Computer Science Department of the University of California, Los Angeles, had in mind when they developed Blue.

Figure 1: Blue framework provides a generic programming model for developing diverse cluster computing paradigms (Source)

The researchers lay out their findings in a new technical report, “Blue: A Unified Programming Model for Diverse Data-intensive Cloud Computing Paradigms.”

They write: “The motivation for this paper is to ease the development of new cluster applications, by introducing an intermediate layer (Figure 1) between resource management and applications. This layer [serves as] a generic programming model upon which any arbitrary cluster application can be built. Not only will this significantly diminish the cost of developing applications, the users will be able to easily select the computation paradigm that best meets their needs.”

In developing the Blue framework and programming model, the researchers aimed for a solution that was neither too low-level and difficult to implement, nor too high-level and fixed. The paper includes an outline for implementation strategy, and points out the framework’s key strengths (notably efficiency and fault-tolerance for cluster programs) and limitations (while it targets data-intensive computational problems, it is not the best choice for task parallelism).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This