The Week in HPC Research

By Tiffany Trader

May 2, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the latest CAREER award recipient; the push to bring parallel computing to the classroom; HPC in accelerator science; the emerging Many-Task Computing paradigm; and a unified programming model for data-intensive computing.

Palermo Wins NSF CAREER Award

Texas A&M University researcher Dr. Sam Palermo has won the prestigious CAREER award for his proposal, “Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures.”

An assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University, Palermo developed energy-efficient transceivers for a unified inter- and intra-chip photonic interconnect architecture. This is significant because conventional off-chip electrical interconnects will not be able to increase their pin-bandwidths significantly due to channel-loss limitations, but silicon photonic interconnects display distance-independent connectivity, where pin-bandwidth scales with the degree of wavelength-division multiplexing (WDM).

The project sets the stage for an explosion in interconnect bandwidth capacity, according to Palermo. He believes that these photonic interconnect architectures have the power to revolutionize a wide-range of computational devices. Future smart mobile devices capable of terascale performance, multi-channel high-resolution magnetic resonance imaging, and even exascale supercomputing are all potential targets. What’s more the proposed technology reduces the energy demand of these complex systems.

The CAREER award was established by the National Science Foundation to recognize junior faculty to advance the discovery process and inspire game-changing thinking.

Next >> The Parallel Mandate

The Parallel Mandate

The large number of research pieces dedicated to computer science education this week highlights the importance of an updated and relevant curriculum. To that end, the importance of parallel computing cannot be ignored.

“How can parallel computing topics be incorporated into core courses that are taken by the majority of undergraduate students?” asks a team of researchers from Knox College, Portland State University and Lewis & Clark College.

Their paper outlines the benefits of using GPUs to teach parallel programming. The authors describe how GPU computing with CUDA was brought into the core undergraduate computer organization course at two different colleges.

“We have found that even though programming in CUDA is not necessarily easy, programmer control and performance impact seem to motivate students to acquire an understanding of parallel architectures,” they write.

A North Carolina-based group of researchers add their voice to the discussion, advocating the use of higher-level abstractions to teach parallel computing. They argue that it is no longer feasible for students to be trained solely in the programming of single processor systems. Students at all levels must be taught the essentials of multicore programming.

Their paper describes two methods:

“The first approach uses a new software environment that creates a higher level of abstraction for parallel and distributed programming based upon a pattern programming approach. The second approach uses compiler directives to describe how a program should be parallelized.”

A team of researchers from the University of Central Florida are also emphasizing the necessity of a computer science curriculum refresh that includes parallel techniques. More specifically, they advise introducing parallel programming across the undergraduate curriculum through an interdisciplinary course on computational modeling.

The core message is the same:

“The end of exponential growth in the computing power available on a single processing element has given birth to an era of massively parallel computing where every programmer must be trained in the art and science of parallel programming,” they write.

Furthermore:

“The construction of computational models has become a fundamental process in the discovery process for all scientific disciplines, and there is little instructional support to enable the next generation of scientists and engineers to effectively employ massively parallel high-performance computing machines in their scientific process.”

The authors argue that because computational modeling straddles several key technology waves, namely big data, computational statistics, and model checking, it is therefore a particularly good choice for introducing today’s students to parallel programming methods.

Next >> Accelerator Science

High Performance Computing in Accelerator Science

A collection of researchers from Lawrence Berkeley National Laboratory (LBNL) and Los Alamos National Laboratory (LANL), led by LBNL’s Robert Ryne, have published a poster highlighting the importance of accelerators (think particles not processors) to science.

Particle accelerators contribute to a wide range of disciplines among them materials science, chemistry, biosciences, high energy physics, and nuclear physics. Marvels of engineering, these machines have important applications in energy, the environment, and national security. Their use in drug design and other medical therapies has tremendous value for quality of life.

The progress of accelerator science and technology is directly tied to advances in computer science. Accelerator modeling brings about cost and risk reduction as well as design optimization and the testing of new ideas.

As for future challenges and opportunities, the paper notes the potential for accelerators to be used as light sources in multiple implementations, including advanced injectors, beam manipulation, novel seeding schemes and more. Laser-Plasma Accelerators (LPA’s) are on-track to revolutionize accelerator technology. They have a place in enhanced beam quality control, 10 GeV stages, and one day may lead to an LPA collider. Researchers are also exploring new accelerator designs, for example electron-ion colliders, FRIB, and muon accelerators.

On the computational modeling side, there are challenges with regard to programming at scale and extracting the performance potential of multicore and hybrid machines. Extreme scale computing affects all aspects of HPC: the algorithms, the I/O, data analysis, visualization and more. Other important points raised are using statistical methods for fast emulators and bringing HPC into the control room for near-real-time feedback to experiments.

Next >> Many-Task Computing – A New Paradigm

The New Many-Task Computing (MTC) Paradigm

The traditional classifications of High-Throughput Computing (HTC) and High-Performance Computing (HPC) are no longer adequate, according to a team of researchers from the National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (KISTI). The reason? An emerging set of applications that require millions or even billions of tasks (communicating each other through files) to be processed with relatively short per task execution times. The researchers refer to this new application segment as Many-Task Computing.

Traditional middleware systems that have been widely used in HTC or HPC are not suitable for supporting MTC applications, therefore a new protocol is needed to bridge the gap between HTC and HPC, they argue. They’ve authored a paper describing the key MTC characteristics and presenting a middleware system to fully support these applications.

Some of the unique characteristics of this new computing paradigm are as follows:

  • A very large number of tasks (i.e. millions or even billions of tasks).
  • Relatively short per task execution times (i.e. seconds to minutes long).
  • Data intensive tasks (i.e., tens of MB of I/O per CPU second).
  • A large variance of task execution times (i.e., ranging from hundreds of milliseconds to hours).
  • Communication-intensive, however, not based on message passing interface (such as MPI) but through files.

“We hope our research can give an insight for a next generation distributed middleware system that can support the most challenging scientific applications,” they write.

Next >> A Unified Programming Model for Big Data

Data-Focused Unified Programming Model

Faced with the need to process large volumes of data, researchers have several computational paradigms to select from, including batch processing, iterative, interactive, memory-based, data flow oriented, relational, structured, among others. These different techniques are mostly incompatible with each other, but what if there was a unified framework that could support these different approaches? That’s exactly what research duo Maneesh Varshney and Vishwa Goudar from the Computer Science Department of the University of California, Los Angeles, had in mind when they developed Blue.

Figure 1: Blue framework provides a generic programming model for developing diverse cluster computing paradigms (Source)

The researchers lay out their findings in a new technical report, “Blue: A Unified Programming Model for Diverse Data-intensive Cloud Computing Paradigms.”

They write: “The motivation for this paper is to ease the development of new cluster applications, by introducing an intermediate layer (Figure 1) between resource management and applications. This layer [serves as] a generic programming model upon which any arbitrary cluster application can be built. Not only will this significantly diminish the cost of developing applications, the users will be able to easily select the computation paradigm that best meets their needs.”

In developing the Blue framework and programming model, the researchers aimed for a solution that was neither too low-level and difficult to implement, nor too high-level and fixed. The paper includes an outline for implementation strategy, and points out the framework’s key strengths (notably efficiency and fault-tolerance for cluster programs) and limitations (while it targets data-intensive computational problems, it is not the best choice for task parallelism).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This