OpenCL: Free Your GPU… and the rest of your system too!

By Nicole Hemsoth

May 6, 2013

For the uninitiated, OpenCL may just seem like a tool for accessing GPUs in a portable manner, an alternative to CUDA that works for ATI cards.  This view of OpenCL is a vast oversimplification.  The truth is that OpenCL offers a rich set of features that will provide the infrastructure needed for application developers to fully utilize an increasingly heterogeneous hardware future.  In this article, we will consider how OpenCL can address some of the coming challenges, and what the OpenCL community is doing to insure that there is a vibrant ecosystem of support, as more and more users turn to OpenCL from vendor-locked solutions.

By now, we’ve all heard of the power wall, and we know that the only way to climb over it is parallelism.  Data-level parallelism (think GPUs) was the first technology to make a mark in the new computing age.  Employing very uniform work units, data-parallel implementations have achieved noteworthy performance gains for many scientific algorithms, and OpenCL certainly has support for this model.

However, this is not the end of the story.  As CPU vendors seek to adapt their architectures to the new parallel reality (and GPU vendors evolve theirs), alternate ideas about how to expose and exploit parallelism within a program are surfacing.  These designs seek to mitigate performance limitations for algorithms where the majority of the work does not fit neatly into non-divergent units of execution.

One such approach is to take a multicore architecture and scale it, providing increased resources for task-parallel workloads.  An example of this is the Intel Xeon Phi architecture, released in 2012.  Sharing similarities with CPUs and GPUs, the Xeon Phi programming model requires a little bit of both.  Like a CPU, the Xeon Phi prefers somewhat longer persistence from a work item, so that its caching scheme can work efficiently to hide memory access latency.  At the same time, the Xeon Phi offers many more units of execution than traditional SMP implementations are designed to handle.  For many applications, there is likely a good balance to be found that combines both data and task-parallelism, and fortunately for developers, Intel has provided OpenCL support for their entire processor line, including Xeon Phi and embedded graphics.  As an example of why this is beneficial, OpenCL has no problem expressing local accumulations, with or without blocked memory access, and its interface for managing work groups is sufficient for any level of data-parallel execution.  These features make it possible to seamlessly integrate mixed programming models that reflect the hybrid characteristics of the Xeon Phi hardware.

A third hardware strategy that has already been widely deployed, but not yet fully utilized (and often not even recognized) is the heterogeneous system-on-a-chip (SoC).  Founded with the now-extinct IBM Cell, and combining so-called latency-optimized cores (think CPU) with throughput-optimized cores (GPU), heterogeneous architectures attempt to provide the best of both worlds, albeit on separate parts of the die.  If you are reading this article on a mobile computing device, or a late model laptop or desktop, chances are that you already have a heterogeneous chip at your disposal: Apple A Series, NVIDIA Tegra, AMD Fusion, Qualcomm Snapdragon, and Intel Ivybridge are all heterogeneous.  Some of these chips are even likely to find their way onto the next generation of supercomputers.  If this is the case, and unless you are explicitly utilizing these resources, they can be an energy drain on your system with no benefit.  OpenCL makes the full potential of heterogeneous architectures available to the developer.

A final evolving hardware strategy that should be mentioned is the Field Programmable Gate Array (FPGA).  Few general-purpose processing architectures can compete with the energy efficiency of a custom circuit.  Sadly, very few developers are prepared to invest the time and effort needed to learn VHDL or Verilog to turn their ideas into a working core.  One very novel application of OpenCL seeks to remove this barrier by creating FPGA firmware from kernels written in the OpenCL C programming language.  The Altera Corporation (maker of the Stratix V architecture) has released the Altera SDK for OpenCL.  Using this set of tools, developers can generate custom hardware, tailor-made for their specific application.  This frees the application developer from the tedium of a job better left to electrical engineers, and, at the same time, opens a fascinating world of possibilities.

All of the hardware trends we have discussed, taken together, present significant challenges for any vendor-specific toolchain.  Consider the programming model for a system with a heterogeneous host processor, augmented with a discrete accelerator (GPU or other).  Efficient utilization of these resources will require the ability to tightly integrate both data-parallel and task-parallel work, along with data motion between the various compute units.  Do we really want to rely on a clumsy vendor-specific patchwork of tools to meet this challenge?  Imagine now that you must also support a similarly provisioned system but built from a different set of architectures.  How many versions of your code would you have to write?  How many man-years might you need for such a task?

With OpenCL, implementing such a model is straightforward.  This is because OpenCL is a natural reflection of the competing hardware architectures on which it is designed to run.  OpenCL accommodates each of the above architectures, and, by design, has no trouble in accommodating all of them together.  Being an open standard, new vendors are able to join the OpenCL dialogue, insuring that OpenCL will be able to support future hardware developments, regardless of what direction they may take.  Additionally, with its support for custom devices, OpenCL offers the flexibility to incorporate system resources that do not fit the current notion of a compute device, opening opportunities for integration of DSPs or internally developed ASICs.

Much of the FUD (fear, uncertainty and doubt) directed at OpenCL has focused on the mantra that OpenCL may be portable but not portably performant.  This is an attempt to divert the discussion from the real issue.  Clearly, all hardware is not the same, and no single approach to expressing a parallel algorithm can be optimal across the wide variety of architectures that are currently available.  This is not the point of OpenCL.  The true power of OpenCL is that it provides the infrastructure that allows us to target different combinations of hardware within a single framework.  OpenCL frees us from the old scenario where developers must use an ad hoc combination of interfaces to support multiple architectures.  True, we may need to write a new version of our kernel to get the best performance on Architecture A, but isn’t this what we actually want?  With OpenCL, developers can easily switch between different kernel implementations, execution topologies and memory model interpretations.  This flexibility is at the core of the OpenCL philosophy.  So, to the OpenCL detractors: A toad may criticize the way that a bird flaps its wings, but only to distract us from the fact that the toad cannot fly.

One thing that has thus far been missing from OpenCL is a formal organization for its users.  To remedy this, some of the primary advocates of OpenCL have organized a new user group.  Since OpenCL is about computing portability, this new group is aptly named Comportability.  Established as a non-profit corporation, Comportability is an open forum for all things related to OpenCL.  Membership is free.  Individuals are invited to participate in discussions, upload software and take part in the annual workshop.  Institutions and vendors may join as voting members, and are invited to form regional chapters, which are encouraged to host future meetings and workshops.

The 1st International Workshop on OpenCL (IWOCL), the annual meeting of the Comportability user group will take place May 13-14, 2013 at the Technology Square Research Building (TSRB) at the Georgia Institute of Technology in Atlanta, Georgia.  Registration for this event is open and the program is on-line.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire