Cray Answers Mid-Market’s Call

By Tiffany Trader

May 7, 2013

Earlier today Cray announced the XC30-AC (air-cooled) supercomputer, a pared-down version of its top-of-the-line XC30 system, aimed at the technical enterprise market space. The news was timed to coincide with the 2013 Cray User Group (CUG) meeting in Napa Valley, California.

The Cray XC30-AC Air-Cooled Supercomputer

Where the XC30-LC (liquid-cooled) product is targeted at Fortune 100 companies, the air-cooled version is intended for the rest of the Top 1000, notes Jay Gould, Cray’s senior product marketing, in an interview with HPCwire. These “mid-market” systems were previously designated as m-versions.

What’s different about the XC30 series, says Gould, “is we can scale up to massive machines like we always have, but now we can also configure down to more aggressively priced machines by customizing the packaging and introducing cost-savings. Previously, the -m was an attempt to size down the machine, people would talk about mid-range, and minis, etc.

“Technical enterprise is what we’re shooting at, and we don’t want anyone who coughs up $500 thousand to $3 million for a Cray to think that they got a diminutive mini version of something or a neutered version of a supercomputer.”

To Cray, “technical enterprise” encompasses pricing, performance and applications. The segment ranges roughly from $500,000 systems to $3 million systems. Above that line lies Cray’s high-end systems. The AC systems will initially extend from 20-200 teraflops, a window that will expand along with Moore’s Law-timed processor iterations.

The AC naming convention follows in the footsteps of Cray’s rebranded Appro systems, but Gould was clear that the AC system leverages all the technology innovation and investment of the XC30 series, optimized for the technical enterprise space.

“We’re economizing all this high-end innovation that we developed for our flagship line and finding ways to make it more aggressively priceable for smaller markets, smaller datacenters and a new class of users within the existing spaces that we already play,” he adds.

Built on the pillars of the XC30 architecture, the AC system uses the same processor technology, the same compute board, and the same processor daughter cards. It is this “Adaptive Supercomputing” strategy that Gould says allows Cray to turn on a new customer trend or industry movement or support new devices without having to redesign the architecture from scratch. Cray has already pre-announced its support for the Intel Phi and NVIDIA GPUs in XC30 and that IP will port straight to the air-cooled version as well. The I/O blades are the same, as is the HPC-optimized Aries interconnect, but the Dragonfly network technology holds an important distinction.

Dragonfly was designed with three ranks. The first rank combines blades within a single chassis via a backplane, while the second rank connects local chassis to each other via passive copper electrical cables. The third rank – a network built of active optical cables that provides row-to-row communication – is intended only for the most massive supercomputers. For smaller systems, like the XC30-AC, this very expensive technology is overkill.

“So while there is this difference in the network topology, it’s still the same architecture so everything is compatible going up. The same software, same software stack, same partners, same ISV vendors, and same middleware vendors are all in play. The Cray ecosystem remains in tact,” says Gould, “as does the Cray reliability, service and support.”

Next >> the Configuration

In addition to employing a less expensive network implementation, the Cray XC30-AC offering is distinguished by its economized packaging, cooling and power options. Each cabinet is self-sufficient: a single high-efficiency fan sucks air in from the bottom and blows it vertically through the cabinet and out the top. There’s no need for liquid coolants or plumbing infrastructure, which is what allows Cray to target new customer types. There’s also no requirement for raised floor datacenters, in fact these systems could even run on cement slabs in a garage.

What ultimately makes this configuration possible is that the cabinets are smaller and less densely populated. The flagship systems are stuffed with blades, as many as will fit, which necessitates a powerful cooling system. In this setup there are 16 vertical compute blades per cabinet, relying on a single fan for cooling. Because the cabinets are self-sufficient, up to eight cabinets can be joined without the need for additional cooling support. To accommodate smaller datacenters or server rooms, the XC30-AC offers a lower-power 208-volt option in addition to the 480-volt standard.

Cray designed the AC version to meet the needs of a new classes of users. There’s a big move to leverage modeling and simulation across multiple verticals. In manufacturing, energy, finance and the pharmaceutical industry, businesses are looking to transition from physical to virtual prototyping to improve ROI and boost time to market. Whether it’s designing the perfect golf club head or developing the world’s most sophisticated turbines, users want to be able to simulate those things from the bottom up rather than building multiple prototypes and dealing with lengthy development cycles.

Cray guides new customers through the selection process by sifting through all of their requirements to understand their application requirements and use model.

“Sometimes they just know at a high level what they’re shooting for,” says Gould. “In other cases, they’ve got a really specific request for information or request for bid where they itemize everything because they’ve done this a lot.

“Some of the new classes of users that we’re talking about haven’t necessarily used high-performance computing before so they don’t even know all of the questions to ask when learning about a system. So when we go through the engagement, we find out whether they have a cement slab floor in their computer room or a raised floor with air flow everywhere, whether they have liquid plumbing or not, so we can guide them based on their performance requirements and their budget to the right solution for their application.”

Not every organization can operate a hundred million or three hundred million or billion dollar datacenter, says Gould. “Some of these new customers don’t even call it a datacenter. They may call it a computer room, computer lab, or server room.”

Additionally, not every computing requirement can be addressed with a cluster. Clusters are a nice fit for capacity type applications, a use case that Cray affirmed when it acquired Appro. But as Gould points out, the supercomputing vendor is seeing new demands from existing customers and from interested prospects that can only be addressed by a capability-optimized computing platform.

Next >> Compatibility

The scaled-down XC-30 should appeal to customers who get time on large Cray machines at national labs. While the advantages of leadership-class systems like Titan or Blue Waters are undeniable, the allocation process has the downside of long wait times and other constraints. The AC racks will allow customers to own their own machine and be 100 percent in control of their schedule and time to market, and they can still utilize the big machines for larger-scale workloads.

Gould stresses that there is complete compatibility from two to 200 cabinets and beyond, ultimately using the same software, the same IP, and same kind of networking.

“It’s going to be a compatible migration, not starting from scratch and porting your applications all over again,” he notes.

This level of compatibility was no accident, as Gould explains:

“We went into this whole portfolio over the last several years open-minded, knowing that we wanted to do a high-end version and a more frugal technical-enterprise version,” he says. “Instead of building the world’s biggest, fastest supercomputer and then trying to figure out how to cut it into pieces, we built it from the ground-up so we could configure single cabinets with air-cooling all the way up to the world’s biggest machines – 480-some-odd cabinets – and be able to be flexible enough to change the networking for the bigger machines and scale down the networking for the smaller machines. That took a lot of time and investment and that was one of the biggest challenges: ‘how do you use one technology for everything?’ and I think we hit this very well.”

The product line is available now and is already shipping. Early customers include a global consumer electronics company and a global financial services company, highlighting the move to non-traditional HPC segments. Cray wants to do its part to ensure that innovation is not limited to the top 100 companies. There is a lot of room for growth and there are many Fortune 1000 companies with an emerging need for a class of supercomputers that fits within their datacenters and their budgets.

“In the macro view,” says Gould. “HPC [spending] is still going up, and the region we are targeting – the half-million to three million dollar price-point – is actually a growth area, not regressing or shrinking, and this is part of our strategic plan to continue to target the right applications and the right integrated systems for those markets.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This