Exterminating at Extreme Scale

By Nicole Hemsoth

May 7, 2013

Since the first bug was eradicated from a Mark II system at Harvard in 1940s (an actual moth wedged in a relay, which drove the machine to a standstill) system exterminators have faced a constant spray of challenges. Nodes continue to reproduce, architectures alter, and application demands climb ever-higher walls.  

This all means it’s getting tougher for code exterminators to reproduce and track down the bugs across many thousands of cores. Further, many pre-petascale debuggers weren’t able to efficiently relay information about the health of the entire application, allowing a small portal to see one process at a time, despite the fact that hundreds were being debugged alongside.

Throw  coprocessors and accelerators into the mix and it seems there’s a perfect storm brewing for a total rethink in more efficient, scalable bug-zapping—especially with the spectre of exascale in the distance.

According to David Lecomber, co-founder and COO of HPC debugging company, Allinea, the scale and complexity of systems it’s been working with, including Titan and Blue Waters, required new approaches to tackle larger node counts. More pressing and complex, however, is the increased heterogeneity. For top-tier machines like these, he says, scale and core diversity are critical–but at the heart of all of their work is improving debugging speed. The company has targeted all of these areas as it’s worked alongside Oak Ridge National Lab, NCSA, and others aiming for extreme scale computing targets, refining its ability to show thousands of processes in one, full view for more effective bug stomping.

In the “moth-plucking” days of debugging, before visually-oriented, multi-process, scalable approaches, every single node in a cluster had to directly connect to where the user was sitting. Naturally, as node counts climbed, the workstations were quickly overloaded, meaning users could only handle at most several hundred or a thousand cores. Debugging was a necessary, clunky of evil—one that wouldn’t hold up to the demands of core counts in the hundreds of thousands, and even if it could keep up, it would slow to a crawl.

Lecomber touts his company’s role in reshaping that long-standing trend via Allinea’s DDT, which offered a UI that could paint the whole landscape of an application, letting users “visualize and compare 200,000 processes as simply as two.” Their work at massive scale recently started in earnest with Jaguar via their work with Oak Ridge, before wading into Blue Waters or battling the Titan. He claims that despite the scale, the speed was emphasized—to the point that Allinea could handle even higher node counts in anything we’re set to see soon. He said that the time to debug using the old node-connected approach was in the minutes, but they’ve been able to trim this process down to seconds.

During the company’s early work with Jaguar, and later Titan, Oak Ridge had a couple of problems, including limitations with the traditional printfs debugging approach to find bugs, followed by adding GPUs into the mix. Oak Ridge’s Tools Project Technical Officer, Joshua Ladd said that the ability to see every process in a parallel job allowed the lab to remove the debugging hassles and speed time to result.

And on the GPU front, the lab wanted researchers to take advantage of Titan’s accelerators but they needed more powerful tools that could attack those more complicated bugs. Further, Oak Ridge was able to harness DDT on Jaguar to debug an open source implementation of MPI at a half-million lines of code across a maximum of 225,000 cores.

Scale aside, as noted, the true challenges relate to the increasing heterogeneity of ever-larger systems. Lecomber said that a lot of work went on behind the scenes to get DDT primed for GPUs and coprocessors, and he expects such challenges are going to persist during the exascale climb. They’ve already done a great deal of work on accelerators and recently looked to address challenges on Xeon Phi, as detailed below.

Beyond new architectures, Allinea is focusing on combining advanced debugging and performance tools so users will be able to better visualize the performance of their applications. In other words, having a petascale machine isn’t incredibly useful if you can’t take advantage of that power—just as computing the fastest wrong answer won’t work either.

When it comes to exascale, and even petascale at this point, “the real gaps are in the tools area, the people writing applications for these large machines need to be able to do performance profiling in a similar way as they handle debugging—visually and with emphasis on speed,” he said. Their MPI profiler, called MAP, highlights lines of code that executed the slowest to demo what happened during the run in a format that will be familiar to those who already use DDT.

While we generally hear about HPC debuggers in the context of national labs, petascale systems are proliferating in the commercial spaces as well, necessitating enterprise-grade, extreme-scale extermination. Lecomber says that companies they work with, several of which are in the oil and gas and engineering arenas, are adopting similarly-sized systems that present mission-critical challenges. Simulating the performance and safety of an engine, for instance, can have devastating results if not done correctly or at best, can result in expensive runtime waste.

Aside from their academic affiliations and work in oil and gas and other key commercial areas, Allinea is working closely with the European Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) to identify what these future systems will look like and how tool vendors and application artists will need to rework their approaches. Lecomber says this also involves collaboration with system designers, processor-makers and other vendors to make sure the exascale research food chain is aligned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This