Exterminating at Extreme Scale

By Nicole Hemsoth

May 7, 2013

Since the first bug was eradicated from a Mark II system at Harvard in 1940s (an actual moth wedged in a relay, which drove the machine to a standstill) system exterminators have faced a constant spray of challenges. Nodes continue to reproduce, architectures alter, and application demands climb ever-higher walls.  

This all means it’s getting tougher for code exterminators to reproduce and track down the bugs across many thousands of cores. Further, many pre-petascale debuggers weren’t able to efficiently relay information about the health of the entire application, allowing a small portal to see one process at a time, despite the fact that hundreds were being debugged alongside.

Throw  coprocessors and accelerators into the mix and it seems there’s a perfect storm brewing for a total rethink in more efficient, scalable bug-zapping—especially with the spectre of exascale in the distance.

According to David Lecomber, co-founder and COO of HPC debugging company, Allinea, the scale and complexity of systems it’s been working with, including Titan and Blue Waters, required new approaches to tackle larger node counts. More pressing and complex, however, is the increased heterogeneity. For top-tier machines like these, he says, scale and core diversity are critical–but at the heart of all of their work is improving debugging speed. The company has targeted all of these areas as it’s worked alongside Oak Ridge National Lab, NCSA, and others aiming for extreme scale computing targets, refining its ability to show thousands of processes in one, full view for more effective bug stomping.

In the “moth-plucking” days of debugging, before visually-oriented, multi-process, scalable approaches, every single node in a cluster had to directly connect to where the user was sitting. Naturally, as node counts climbed, the workstations were quickly overloaded, meaning users could only handle at most several hundred or a thousand cores. Debugging was a necessary, clunky of evil—one that wouldn’t hold up to the demands of core counts in the hundreds of thousands, and even if it could keep up, it would slow to a crawl.

Lecomber touts his company’s role in reshaping that long-standing trend via Allinea’s DDT, which offered a UI that could paint the whole landscape of an application, letting users “visualize and compare 200,000 processes as simply as two.” Their work at massive scale recently started in earnest with Jaguar via their work with Oak Ridge, before wading into Blue Waters or battling the Titan. He claims that despite the scale, the speed was emphasized—to the point that Allinea could handle even higher node counts in anything we’re set to see soon. He said that the time to debug using the old node-connected approach was in the minutes, but they’ve been able to trim this process down to seconds.

During the company’s early work with Jaguar, and later Titan, Oak Ridge had a couple of problems, including limitations with the traditional printfs debugging approach to find bugs, followed by adding GPUs into the mix. Oak Ridge’s Tools Project Technical Officer, Joshua Ladd said that the ability to see every process in a parallel job allowed the lab to remove the debugging hassles and speed time to result.

And on the GPU front, the lab wanted researchers to take advantage of Titan’s accelerators but they needed more powerful tools that could attack those more complicated bugs. Further, Oak Ridge was able to harness DDT on Jaguar to debug an open source implementation of MPI at a half-million lines of code across a maximum of 225,000 cores.

Scale aside, as noted, the true challenges relate to the increasing heterogeneity of ever-larger systems. Lecomber said that a lot of work went on behind the scenes to get DDT primed for GPUs and coprocessors, and he expects such challenges are going to persist during the exascale climb. They’ve already done a great deal of work on accelerators and recently looked to address challenges on Xeon Phi, as detailed below.

Beyond new architectures, Allinea is focusing on combining advanced debugging and performance tools so users will be able to better visualize the performance of their applications. In other words, having a petascale machine isn’t incredibly useful if you can’t take advantage of that power—just as computing the fastest wrong answer won’t work either.

When it comes to exascale, and even petascale at this point, “the real gaps are in the tools area, the people writing applications for these large machines need to be able to do performance profiling in a similar way as they handle debugging—visually and with emphasis on speed,” he said. Their MPI profiler, called MAP, highlights lines of code that executed the slowest to demo what happened during the run in a format that will be familiar to those who already use DDT.

While we generally hear about HPC debuggers in the context of national labs, petascale systems are proliferating in the commercial spaces as well, necessitating enterprise-grade, extreme-scale extermination. Lecomber says that companies they work with, several of which are in the oil and gas and engineering arenas, are adopting similarly-sized systems that present mission-critical challenges. Simulating the performance and safety of an engine, for instance, can have devastating results if not done correctly or at best, can result in expensive runtime waste.

Aside from their academic affiliations and work in oil and gas and other key commercial areas, Allinea is working closely with the European Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) to identify what these future systems will look like and how tool vendors and application artists will need to rework their approaches. Lecomber says this also involves collaboration with system designers, processor-makers and other vendors to make sure the exascale research food chain is aligned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. Blacklists Sugon, 4 Others from Access to Advanced Technology

June 21, 2019

Just as ISC19 wrapped up yesterday, showcasing the latest in supercomputing technology, the U.S. added five Chinese entities including Sugon to its blacklist prohibiting them from access to advanced technology vital to s Read more…

By John Russell

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious vision for the future of weather and climate prediction. For Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

IBM Claims No. 1 Commercial Supercomputer with Total Oil & Gas System 

June 20, 2019

IBM can now boast not only the two most powerful supercomputers in the world, it also has claimed the top spot for a supercomputer used in a commercial setting. The Pangea III, which leverages IBM's Power9 CPU-GPU archit Read more…

By Staff Report

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

IBM Claims No. 1 Commercial Supercomputer with Total Oil & Gas System 

June 20, 2019

IBM can now boast not only the two most powerful supercomputers in the world, it also has claimed the top spot for a supercomputer used in a commercial setting. Read more…

By Staff Report

HPC on Pace for 5-Year 6.8% CAGR; Guess Which Hyperscaler Spent $10B on IT Last Year?

June 20, 2019

In the neck-and-neck horse race for HPC server market share, HPE has hung on to a slim, shrinking lead over Dell EMC – but if server and storage market shares Read more…

By Doug Black

ISC 2019 Research Paper Award Winners Announced

June 19, 2019

At the 2019 International Supercomputing Conference (ISC) in Frankfurt this week, the ISC committee awarded the event's top prizes for outstanding research pape Read more…

By Oliver Peckham

ISC Keynote: The Algorithms of Life – Scientific Computing for Systems Biology

June 19, 2019

Systems biology has existed loosely under many definitions for a couple of decades. It’s the notion of describing living systems using first-principle physics Read more…

By John Russell

Summit Achieves 445 Petaflops on New ‘HPL-AI’ Benchmark

June 19, 2019

Summit -- the world's top-ranking supercomputer -- has been used to test-drive a new mixed-precision Linpack benchmark, which for now is being called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Linpack (HPL) benchmark, which is the basis for the Top500 list that biannually ranks world's fastest supercomputers. Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This