Exterminating at Extreme Scale

By Nicole Hemsoth

May 7, 2013

Since the first bug was eradicated from a Mark II system at Harvard in 1940s (an actual moth wedged in a relay, which drove the machine to a standstill) system exterminators have faced a constant spray of challenges. Nodes continue to reproduce, architectures alter, and application demands climb ever-higher walls.  

This all means it’s getting tougher for code exterminators to reproduce and track down the bugs across many thousands of cores. Further, many pre-petascale debuggers weren’t able to efficiently relay information about the health of the entire application, allowing a small portal to see one process at a time, despite the fact that hundreds were being debugged alongside.

Throw  coprocessors and accelerators into the mix and it seems there’s a perfect storm brewing for a total rethink in more efficient, scalable bug-zapping—especially with the spectre of exascale in the distance.

According to David Lecomber, co-founder and COO of HPC debugging company, Allinea, the scale and complexity of systems it’s been working with, including Titan and Blue Waters, required new approaches to tackle larger node counts. More pressing and complex, however, is the increased heterogeneity. For top-tier machines like these, he says, scale and core diversity are critical–but at the heart of all of their work is improving debugging speed. The company has targeted all of these areas as it’s worked alongside Oak Ridge National Lab, NCSA, and others aiming for extreme scale computing targets, refining its ability to show thousands of processes in one, full view for more effective bug stomping.

In the “moth-plucking” days of debugging, before visually-oriented, multi-process, scalable approaches, every single node in a cluster had to directly connect to where the user was sitting. Naturally, as node counts climbed, the workstations were quickly overloaded, meaning users could only handle at most several hundred or a thousand cores. Debugging was a necessary, clunky of evil—one that wouldn’t hold up to the demands of core counts in the hundreds of thousands, and even if it could keep up, it would slow to a crawl.

Lecomber touts his company’s role in reshaping that long-standing trend via Allinea’s DDT, which offered a UI that could paint the whole landscape of an application, letting users “visualize and compare 200,000 processes as simply as two.” Their work at massive scale recently started in earnest with Jaguar via their work with Oak Ridge, before wading into Blue Waters or battling the Titan. He claims that despite the scale, the speed was emphasized—to the point that Allinea could handle even higher node counts in anything we’re set to see soon. He said that the time to debug using the old node-connected approach was in the minutes, but they’ve been able to trim this process down to seconds.

During the company’s early work with Jaguar, and later Titan, Oak Ridge had a couple of problems, including limitations with the traditional printfs debugging approach to find bugs, followed by adding GPUs into the mix. Oak Ridge’s Tools Project Technical Officer, Joshua Ladd said that the ability to see every process in a parallel job allowed the lab to remove the debugging hassles and speed time to result.

And on the GPU front, the lab wanted researchers to take advantage of Titan’s accelerators but they needed more powerful tools that could attack those more complicated bugs. Further, Oak Ridge was able to harness DDT on Jaguar to debug an open source implementation of MPI at a half-million lines of code across a maximum of 225,000 cores.

Scale aside, as noted, the true challenges relate to the increasing heterogeneity of ever-larger systems. Lecomber said that a lot of work went on behind the scenes to get DDT primed for GPUs and coprocessors, and he expects such challenges are going to persist during the exascale climb. They’ve already done a great deal of work on accelerators and recently looked to address challenges on Xeon Phi, as detailed below.

Beyond new architectures, Allinea is focusing on combining advanced debugging and performance tools so users will be able to better visualize the performance of their applications. In other words, having a petascale machine isn’t incredibly useful if you can’t take advantage of that power—just as computing the fastest wrong answer won’t work either.

When it comes to exascale, and even petascale at this point, “the real gaps are in the tools area, the people writing applications for these large machines need to be able to do performance profiling in a similar way as they handle debugging—visually and with emphasis on speed,” he said. Their MPI profiler, called MAP, highlights lines of code that executed the slowest to demo what happened during the run in a format that will be familiar to those who already use DDT.

While we generally hear about HPC debuggers in the context of national labs, petascale systems are proliferating in the commercial spaces as well, necessitating enterprise-grade, extreme-scale extermination. Lecomber says that companies they work with, several of which are in the oil and gas and engineering arenas, are adopting similarly-sized systems that present mission-critical challenges. Simulating the performance and safety of an engine, for instance, can have devastating results if not done correctly or at best, can result in expensive runtime waste.

Aside from their academic affiliations and work in oil and gas and other key commercial areas, Allinea is working closely with the European Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) to identify what these future systems will look like and how tool vendors and application artists will need to rework their approaches. Lecomber says this also involves collaboration with system designers, processor-makers and other vendors to make sure the exascale research food chain is aligned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This