Exterminating at Extreme Scale

By Nicole Hemsoth

May 7, 2013

Since the first bug was eradicated from a Mark II system at Harvard in 1940s (an actual moth wedged in a relay, which drove the machine to a standstill) system exterminators have faced a constant spray of challenges. Nodes continue to reproduce, architectures alter, and application demands climb ever-higher walls.  

This all means it’s getting tougher for code exterminators to reproduce and track down the bugs across many thousands of cores. Further, many pre-petascale debuggers weren’t able to efficiently relay information about the health of the entire application, allowing a small portal to see one process at a time, despite the fact that hundreds were being debugged alongside.

Throw  coprocessors and accelerators into the mix and it seems there’s a perfect storm brewing for a total rethink in more efficient, scalable bug-zapping—especially with the spectre of exascale in the distance.

According to David Lecomber, co-founder and COO of HPC debugging company, Allinea, the scale and complexity of systems it’s been working with, including Titan and Blue Waters, required new approaches to tackle larger node counts. More pressing and complex, however, is the increased heterogeneity. For top-tier machines like these, he says, scale and core diversity are critical–but at the heart of all of their work is improving debugging speed. The company has targeted all of these areas as it’s worked alongside Oak Ridge National Lab, NCSA, and others aiming for extreme scale computing targets, refining its ability to show thousands of processes in one, full view for more effective bug stomping.

In the “moth-plucking” days of debugging, before visually-oriented, multi-process, scalable approaches, every single node in a cluster had to directly connect to where the user was sitting. Naturally, as node counts climbed, the workstations were quickly overloaded, meaning users could only handle at most several hundred or a thousand cores. Debugging was a necessary, clunky of evil—one that wouldn’t hold up to the demands of core counts in the hundreds of thousands, and even if it could keep up, it would slow to a crawl.

Lecomber touts his company’s role in reshaping that long-standing trend via Allinea’s DDT, which offered a UI that could paint the whole landscape of an application, letting users “visualize and compare 200,000 processes as simply as two.” Their work at massive scale recently started in earnest with Jaguar via their work with Oak Ridge, before wading into Blue Waters or battling the Titan. He claims that despite the scale, the speed was emphasized—to the point that Allinea could handle even higher node counts in anything we’re set to see soon. He said that the time to debug using the old node-connected approach was in the minutes, but they’ve been able to trim this process down to seconds.

During the company’s early work with Jaguar, and later Titan, Oak Ridge had a couple of problems, including limitations with the traditional printfs debugging approach to find bugs, followed by adding GPUs into the mix. Oak Ridge’s Tools Project Technical Officer, Joshua Ladd said that the ability to see every process in a parallel job allowed the lab to remove the debugging hassles and speed time to result.

And on the GPU front, the lab wanted researchers to take advantage of Titan’s accelerators but they needed more powerful tools that could attack those more complicated bugs. Further, Oak Ridge was able to harness DDT on Jaguar to debug an open source implementation of MPI at a half-million lines of code across a maximum of 225,000 cores.

Scale aside, as noted, the true challenges relate to the increasing heterogeneity of ever-larger systems. Lecomber said that a lot of work went on behind the scenes to get DDT primed for GPUs and coprocessors, and he expects such challenges are going to persist during the exascale climb. They’ve already done a great deal of work on accelerators and recently looked to address challenges on Xeon Phi, as detailed below.

Beyond new architectures, Allinea is focusing on combining advanced debugging and performance tools so users will be able to better visualize the performance of their applications. In other words, having a petascale machine isn’t incredibly useful if you can’t take advantage of that power—just as computing the fastest wrong answer won’t work either.

When it comes to exascale, and even petascale at this point, “the real gaps are in the tools area, the people writing applications for these large machines need to be able to do performance profiling in a similar way as they handle debugging—visually and with emphasis on speed,” he said. Their MPI profiler, called MAP, highlights lines of code that executed the slowest to demo what happened during the run in a format that will be familiar to those who already use DDT.

While we generally hear about HPC debuggers in the context of national labs, petascale systems are proliferating in the commercial spaces as well, necessitating enterprise-grade, extreme-scale extermination. Lecomber says that companies they work with, several of which are in the oil and gas and engineering arenas, are adopting similarly-sized systems that present mission-critical challenges. Simulating the performance and safety of an engine, for instance, can have devastating results if not done correctly or at best, can result in expensive runtime waste.

Aside from their academic affiliations and work in oil and gas and other key commercial areas, Allinea is working closely with the European Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) to identify what these future systems will look like and how tool vendors and application artists will need to rework their approaches. Lecomber says this also involves collaboration with system designers, processor-makers and other vendors to make sure the exascale research food chain is aligned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire