Supercomputing Vet Champions Quantum Cause

By Nicole Hemsoth

May 13, 2013

Update: D-Wave system coming from Google and NASA … Read More

Supercomputing veteran Bo Ewald has been neck-deep in bleeding edge system development since his twelve-year stint at Cray Research back in the mid-1980s, which was followed by his tenure at large organizations like SGI and startups, including Scale Eight Corporation and Linux Networx.

As we reported earlier this month, Ewald is stepping into yet another new role, this time at the helm of the first quantum computing company, D-Wave Systems. During our recent conversation, Ewald confirmed his belief that quantum computers will be at the heart of a new wave of computing—at least for a certain set of specific optimization, machine learning and pattern recognition problems.

“This is the early days, almost like when the first Cray 1 or Thinking Machines systems came out,” Ewald reminisced. The same skepticism, scientific and business practicality questions, and the same promise exists, he argues.

D-Wave has been in development for 14 years, and has finally arrived at a commercialization opportunity to pitch from its new office in Palo Alto. With a recognizable name like Ewald front and center, it’s clear the company sees opportunities outside of its one public customer, Lockheed Martin. Ewald said he researched heavily to validate the commercial viability and will lead D-Wave’s charge into defense and intelligence, research, and other potential markets. The catch, of course, is that organizations need to have a spare $10 million or more and the right physics and math pros to tap into the programmatic possibilities.

Like the historical systems mentioned above, the company’s flagship system, the D-Wave One, was greeted with equal parts intense skepticism and excitement. With some highly publicized demos and a customer case under their belt, D-Wave thinks it can find a solid market for its 128-qubit processor-based technology, which comes wrapped in its own cryogenic and quantum-balanced unit pictured left.

The company will face a lengthy battle against perception that these quantum computers are fringe or merely experimental. However, some researchers, including Dr. Catherine McGeoch, Beitzel Professor in the Computer Science department at Amherst College, are validating performance claims. For a particular range of applications, quantum vastly outpaced conventional computing. And their work at the USC-Lockheed Martin Center for Quantum Computing continues to offer some serious credibility for, again, a certain class of optimization problems.

As with all early-stage innovations in computer science, there is a major programming and software ecosystem gap. Ewald says this is really no different than what happened with GPUs. He argues that if one thinks about the code and partitioning problems that were present with those accelerators before the software tooling was there in spades, the same story will play out. At this point, mathematicians and physicists can construct their problems numerically using the handful of tools at their disposal and then map them onto the quantum machine.

“We’re on the edge of something revolutionary,” he explained. “This is far different than traditional scientific computing and high performance computing, which is numerically intensive—it’s about crunching a lot of numbers.”

For a range of optimization problems, however, where calculating using the standard set of ones and zeros results in incredibly slow and complex equations, quantum computing relies on “mapping an optimization problem onto the quantum computer so it can instantaneously, once it reaches the quantum state, give you a better solution than the one you started with. With multiple iterations, it will arrive at the best possible answer.”

To put optimization problems into a “normal” context, imagine the following, very common scenario. There is a massive snowstorm in Chicago, which has caused grounding of an unprecedented number of flights. Airlines need to be able to quickly figure out the very best possible solution to moving planes and crews around to adapt. A few iterations on the D-Wave One, says Ewald, and there it is.

Sounds almost too good to be true. Well, there are some catches—the simplest to see is the mere complexity of the quantum process. Further, there’s the programming for these select optimization, machine learning, and pattern recognition problems.

Take a look at the photo on the left to see the inner workings of one D-Wave’s deep freeze boxes. Outside of using atoms rather than bits to solve some of the most perplexing problems in computer science, there are other elements that make D-Wave’s technology noteworthy. While Ewald couldn’t discuss details, he said the real challenge that all the years of R&D have been tackling lies in getting the qubits—the quantum bits—to engage in a way where they become entangled. At this point, the system will move to a lower energy state but there are tough hurdles to create those conditions.

The qubits need to exist at near absolute zero in terms of temperature, vibration and magnetism must be eliminated, and it must operate in a perfect vacuum. That’s a tall order, but Ewald said that the science is there and the applications are real. D-Wave has managed to create this environment to the point where they can get up to 500 qubits into a quantum state.

But theory aside, who will be installing a multi-million dollar ($10 million and up) D-Wave One in the next few years, especially at a time of crunched budgets?  Perhaps the best advertising mechanism the company has lies in its work with Lockheed Martin.  While they haven’t been overt about what problems they’re using their D-Wave setup for, the USC-Lockheed Martin Center for Quantum Computing has been very vocal about their belief in the future of quantum computing.

Lockheed took care to stress the importance of optimization problem solving–finding the best possible answer in a sea of possible answers–which means that’s where their interests likely lie. Government, intelligence and industrial uses remains unclear, but Ewald says that new uses and use cases for these systems will emerge in all areas typically reserved for HPC, including financial services, oil and gas, life sciences–the usual suspects.

“This type of computer is not intended for surfing the internet, but it does solve this narrow but important type of problem really, really fast,” said Dr. Catherine McGeoch. “There are degrees of what it can do. If you want it to solve the exact problem it’s built to solve, at the problem sizes I tested, it’s thousands of times faster than anything I’m aware of. If you want it to solve more general problems of that size, I would say it competes – it does as well as some of the best things I’ve looked at. At this point it’s merely above average but shows a promising scaling trajectory.”

For now, D-Wave stands alone in an emerging market, in much the same way Cray was the monolith at the beginning of the era it kicked off. Ewald is in the unique position of having been at the forefront of one disruptive event in technology, while rounding out his long career leading another such transition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This