Supercomputing Vet Champions Quantum Cause

By Nicole Hemsoth

May 13, 2013

Update: D-Wave system coming from Google and NASA … Read More

Supercomputing veteran Bo Ewald has been neck-deep in bleeding edge system development since his twelve-year stint at Cray Research back in the mid-1980s, which was followed by his tenure at large organizations like SGI and startups, including Scale Eight Corporation and Linux Networx.

As we reported earlier this month, Ewald is stepping into yet another new role, this time at the helm of the first quantum computing company, D-Wave Systems. During our recent conversation, Ewald confirmed his belief that quantum computers will be at the heart of a new wave of computing—at least for a certain set of specific optimization, machine learning and pattern recognition problems.

“This is the early days, almost like when the first Cray 1 or Thinking Machines systems came out,” Ewald reminisced. The same skepticism, scientific and business practicality questions, and the same promise exists, he argues.

D-Wave has been in development for 14 years, and has finally arrived at a commercialization opportunity to pitch from its new office in Palo Alto. With a recognizable name like Ewald front and center, it’s clear the company sees opportunities outside of its one public customer, Lockheed Martin. Ewald said he researched heavily to validate the commercial viability and will lead D-Wave’s charge into defense and intelligence, research, and other potential markets. The catch, of course, is that organizations need to have a spare $10 million or more and the right physics and math pros to tap into the programmatic possibilities.

Like the historical systems mentioned above, the company’s flagship system, the D-Wave One, was greeted with equal parts intense skepticism and excitement. With some highly publicized demos and a customer case under their belt, D-Wave thinks it can find a solid market for its 128-qubit processor-based technology, which comes wrapped in its own cryogenic and quantum-balanced unit pictured left.

The company will face a lengthy battle against perception that these quantum computers are fringe or merely experimental. However, some researchers, including Dr. Catherine McGeoch, Beitzel Professor in the Computer Science department at Amherst College, are validating performance claims. For a particular range of applications, quantum vastly outpaced conventional computing. And their work at the USC-Lockheed Martin Center for Quantum Computing continues to offer some serious credibility for, again, a certain class of optimization problems.

As with all early-stage innovations in computer science, there is a major programming and software ecosystem gap. Ewald says this is really no different than what happened with GPUs. He argues that if one thinks about the code and partitioning problems that were present with those accelerators before the software tooling was there in spades, the same story will play out. At this point, mathematicians and physicists can construct their problems numerically using the handful of tools at their disposal and then map them onto the quantum machine.

“We’re on the edge of something revolutionary,” he explained. “This is far different than traditional scientific computing and high performance computing, which is numerically intensive—it’s about crunching a lot of numbers.”

For a range of optimization problems, however, where calculating using the standard set of ones and zeros results in incredibly slow and complex equations, quantum computing relies on “mapping an optimization problem onto the quantum computer so it can instantaneously, once it reaches the quantum state, give you a better solution than the one you started with. With multiple iterations, it will arrive at the best possible answer.”

To put optimization problems into a “normal” context, imagine the following, very common scenario. There is a massive snowstorm in Chicago, which has caused grounding of an unprecedented number of flights. Airlines need to be able to quickly figure out the very best possible solution to moving planes and crews around to adapt. A few iterations on the D-Wave One, says Ewald, and there it is.

Sounds almost too good to be true. Well, there are some catches—the simplest to see is the mere complexity of the quantum process. Further, there’s the programming for these select optimization, machine learning, and pattern recognition problems.

Take a look at the photo on the left to see the inner workings of one D-Wave’s deep freeze boxes. Outside of using atoms rather than bits to solve some of the most perplexing problems in computer science, there are other elements that make D-Wave’s technology noteworthy. While Ewald couldn’t discuss details, he said the real challenge that all the years of R&D have been tackling lies in getting the qubits—the quantum bits—to engage in a way where they become entangled. At this point, the system will move to a lower energy state but there are tough hurdles to create those conditions.

The qubits need to exist at near absolute zero in terms of temperature, vibration and magnetism must be eliminated, and it must operate in a perfect vacuum. That’s a tall order, but Ewald said that the science is there and the applications are real. D-Wave has managed to create this environment to the point where they can get up to 500 qubits into a quantum state.

But theory aside, who will be installing a multi-million dollar ($10 million and up) D-Wave One in the next few years, especially at a time of crunched budgets?  Perhaps the best advertising mechanism the company has lies in its work with Lockheed Martin.  While they haven’t been overt about what problems they’re using their D-Wave setup for, the USC-Lockheed Martin Center for Quantum Computing has been very vocal about their belief in the future of quantum computing.

Lockheed took care to stress the importance of optimization problem solving–finding the best possible answer in a sea of possible answers–which means that’s where their interests likely lie. Government, intelligence and industrial uses remains unclear, but Ewald says that new uses and use cases for these systems will emerge in all areas typically reserved for HPC, including financial services, oil and gas, life sciences–the usual suspects.

“This type of computer is not intended for surfing the internet, but it does solve this narrow but important type of problem really, really fast,” said Dr. Catherine McGeoch. “There are degrees of what it can do. If you want it to solve the exact problem it’s built to solve, at the problem sizes I tested, it’s thousands of times faster than anything I’m aware of. If you want it to solve more general problems of that size, I would say it competes – it does as well as some of the best things I’ve looked at. At this point it’s merely above average but shows a promising scaling trajectory.”

For now, D-Wave stands alone in an emerging market, in much the same way Cray was the monolith at the beginning of the era it kicked off. Ewald is in the unique position of having been at the forefront of one disruptive event in technology, while rounding out his long career leading another such transition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the most experienced cluster administrators. Maintaining a balan Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This