Supercomputing Vet Champions Quantum Cause

By Nicole Hemsoth

May 13, 2013

Update: D-Wave system coming from Google and NASA … Read More

Supercomputing veteran Bo Ewald has been neck-deep in bleeding edge system development since his twelve-year stint at Cray Research back in the mid-1980s, which was followed by his tenure at large organizations like SGI and startups, including Scale Eight Corporation and Linux Networx.

As we reported earlier this month, Ewald is stepping into yet another new role, this time at the helm of the first quantum computing company, D-Wave Systems. During our recent conversation, Ewald confirmed his belief that quantum computers will be at the heart of a new wave of computing—at least for a certain set of specific optimization, machine learning and pattern recognition problems.

“This is the early days, almost like when the first Cray 1 or Thinking Machines systems came out,” Ewald reminisced. The same skepticism, scientific and business practicality questions, and the same promise exists, he argues.

D-Wave has been in development for 14 years, and has finally arrived at a commercialization opportunity to pitch from its new office in Palo Alto. With a recognizable name like Ewald front and center, it’s clear the company sees opportunities outside of its one public customer, Lockheed Martin. Ewald said he researched heavily to validate the commercial viability and will lead D-Wave’s charge into defense and intelligence, research, and other potential markets. The catch, of course, is that organizations need to have a spare $10 million or more and the right physics and math pros to tap into the programmatic possibilities.

Like the historical systems mentioned above, the company’s flagship system, the D-Wave One, was greeted with equal parts intense skepticism and excitement. With some highly publicized demos and a customer case under their belt, D-Wave thinks it can find a solid market for its 128-qubit processor-based technology, which comes wrapped in its own cryogenic and quantum-balanced unit pictured left.

The company will face a lengthy battle against perception that these quantum computers are fringe or merely experimental. However, some researchers, including Dr. Catherine McGeoch, Beitzel Professor in the Computer Science department at Amherst College, are validating performance claims. For a particular range of applications, quantum vastly outpaced conventional computing. And their work at the USC-Lockheed Martin Center for Quantum Computing continues to offer some serious credibility for, again, a certain class of optimization problems.

As with all early-stage innovations in computer science, there is a major programming and software ecosystem gap. Ewald says this is really no different than what happened with GPUs. He argues that if one thinks about the code and partitioning problems that were present with those accelerators before the software tooling was there in spades, the same story will play out. At this point, mathematicians and physicists can construct their problems numerically using the handful of tools at their disposal and then map them onto the quantum machine.

“We’re on the edge of something revolutionary,” he explained. “This is far different than traditional scientific computing and high performance computing, which is numerically intensive—it’s about crunching a lot of numbers.”

For a range of optimization problems, however, where calculating using the standard set of ones and zeros results in incredibly slow and complex equations, quantum computing relies on “mapping an optimization problem onto the quantum computer so it can instantaneously, once it reaches the quantum state, give you a better solution than the one you started with. With multiple iterations, it will arrive at the best possible answer.”

To put optimization problems into a “normal” context, imagine the following, very common scenario. There is a massive snowstorm in Chicago, which has caused grounding of an unprecedented number of flights. Airlines need to be able to quickly figure out the very best possible solution to moving planes and crews around to adapt. A few iterations on the D-Wave One, says Ewald, and there it is.

Sounds almost too good to be true. Well, there are some catches—the simplest to see is the mere complexity of the quantum process. Further, there’s the programming for these select optimization, machine learning, and pattern recognition problems.

Take a look at the photo on the left to see the inner workings of one D-Wave’s deep freeze boxes. Outside of using atoms rather than bits to solve some of the most perplexing problems in computer science, there are other elements that make D-Wave’s technology noteworthy. While Ewald couldn’t discuss details, he said the real challenge that all the years of R&D have been tackling lies in getting the qubits—the quantum bits—to engage in a way where they become entangled. At this point, the system will move to a lower energy state but there are tough hurdles to create those conditions.

The qubits need to exist at near absolute zero in terms of temperature, vibration and magnetism must be eliminated, and it must operate in a perfect vacuum. That’s a tall order, but Ewald said that the science is there and the applications are real. D-Wave has managed to create this environment to the point where they can get up to 500 qubits into a quantum state.

But theory aside, who will be installing a multi-million dollar ($10 million and up) D-Wave One in the next few years, especially at a time of crunched budgets?  Perhaps the best advertising mechanism the company has lies in its work with Lockheed Martin.  While they haven’t been overt about what problems they’re using their D-Wave setup for, the USC-Lockheed Martin Center for Quantum Computing has been very vocal about their belief in the future of quantum computing.

Lockheed took care to stress the importance of optimization problem solving–finding the best possible answer in a sea of possible answers–which means that’s where their interests likely lie. Government, intelligence and industrial uses remains unclear, but Ewald says that new uses and use cases for these systems will emerge in all areas typically reserved for HPC, including financial services, oil and gas, life sciences–the usual suspects.

“This type of computer is not intended for surfing the internet, but it does solve this narrow but important type of problem really, really fast,” said Dr. Catherine McGeoch. “There are degrees of what it can do. If you want it to solve the exact problem it’s built to solve, at the problem sizes I tested, it’s thousands of times faster than anything I’m aware of. If you want it to solve more general problems of that size, I would say it competes – it does as well as some of the best things I’ve looked at. At this point it’s merely above average but shows a promising scaling trajectory.”

For now, D-Wave stands alone in an emerging market, in much the same way Cray was the monolith at the beginning of the era it kicked off. Ewald is in the unique position of having been at the forefront of one disruptive event in technology, while rounding out his long career leading another such transition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This