“No Exascale for You!” An Interview with Berkeley Lab’s Horst Simon

By Nicole Hemsoth

May 15, 2013

Although Horst Simon was named Deputy Director of Lawrence Berkeley National Laboratory, he maintains his strong ties to the scientific computing community as an editor of the TOP500 list and as an invited speaker at conferences.

Twice during the week of May 6, Simon gave back-to-back presentations of a new talk on “Why We Need Exascale and Why We Won’t Get There by 2020.” Not only was the talk a hit with conference attendees, but it also made its way onto Slashdot. In this HPCwire exclusive, Simon talks about his presentation with Jon Bashor of Berkeley Lab.

Simon is well positioned to discuss the path to exascale. An internationally recognized expert in computer science and applied mathematics, he joined Berkeley Lab in 1996 as director of the newly formed National Energy Research Scientific Computing Center (NERSC), and was one of the key architects in establishing NERSC at its new location in Berkeley. Under his leadership NERSC enabled important discoveries for research in fields ranging from global climate modeling to astrophysics. Simon was also the founding director of Berkeley Lab’s Computational Research Division, which conducts applied research and development in computer science, computational science, and applied mathematics.

In his prior role as Associate Lab Director for Computing Sciences, Simon helped to establish Berkeley Lab as a world leader in providing supercomputing resources to support research across a wide spectrum of scientific disciplines. Simon’s research interests are in the development of sparse matrix algorithms, algorithms for large-scale eigenvalue problems, and domain decomposition algorithms for unstructured domains for parallel processing. His algorithm research efforts were honored with the 1988 and the 2009 Gordon Bell Prize for parallel processing research. He was also member of the NASA team that developed the NAS Parallel Benchmarks, a widely used standard for evaluating the performance of massively parallel systems. He is co-editor of the twice-yearly TOP500 list that tracks the most powerful supercomputers worldwide, as well as related architecture and technology trends.

Question: On two consecutive days in early May, you gave a talk on “Why we need Exascale and why we won’t get there by 2020,” first at the IEEE Optical Interconnects meeting in Santa Fe and then at the Cray User Group meeting in Napa. What’s your thinking that led to the presentation?

Horst Simon: Well, everybody is talking about Exascale these days. Petaflop/s systems are firmly established in the HPC ecosystem and people are looking ahead to when we will see an exaflops/s machine. My position is that the methods we have been using to predict when we cross certain thresholds, like teraflop/s and petaflop/s no longer apply.

Q: Why not?

Simon: The TOP500 List, of which I am one of four editors, is marking its 20th anniversary as the chronicler of HPC performance. When it was started 20 years ago, the technology was transitioning from vector systems to massively parallel processing systems, or MPP. Now, back then “massively parallel” referred to machines with 64, 128 or even 256 CPUs. The TOP500 list was created to help understand this transition and to define what was a “supercomputer.”

If you look at the growth curve of performance over those 20 years, it is clearly influenced by Moore’s Law and parallelism. It’s not a surprising trajectory and if in 1992 someone said the first teraflop/s system would appear by such-and-such a date, they had a good chance of being correct. But we can’t say that for the next eight to 10 years. For one thing, it’s not clear what architecture will get us to exascale. Many look at the performance growth that is clearly visible over the last 20 years on the TOP500 list, and then just simply extend the straight line from today for another 10 or 12 years. This “straight line” extrapolation thinking is wrong. I think that the computing world faces a fundamental technology transition that will disrupt this simple extrapolation.

Q: How do current architectures fit into the picture?

Simon: We are currently following three different paths, each of which claims one of the top three slots on the latest TOP500 list.

The multicore path is built around high-end CPUs, such at Intel’s x86, SPARC and IBM’s Power 7. The Manycore/embedded approach uses many simpler, low power cores from embedded systems. Finally, there is the GPU/accelerator path using highly specialized processors from the gaming/graphics market space, such as NVIDIA’s Fermi, the Cell processor and Intel’s Xeon Phi (MIC).

Titan, the No. 1 system at Oak Ridge, uses the GPU/accelerator approach. The manycore embedded processor path has led to Blue Gene, which is as No. 2. And the K computer, using SPARC CPUs, is at No. 3.

One way to look at the race to exascale is as a swim meet. There are three swim lanes, each heading toward the same goal. But who do you bet on to win the race? If you choose too soon, your users cannot follow you. If you choose too late, you fall behind on the performance curve. And if you choose incorrectly, your users face multiple disruptive changes in the technology they rely on.

For the three swim lanes, the multicore path could hit a dead end, as seen by IBM’s cancellation of its contract for Blue Waters. Is this an indication that multicore with complex cores is nearing the end of the line? In the embedded lane, Blue Gene is the last of the line. Will there be any more large-scale embedded multicore machines? And with GPU/accelerators, Intel bought Cray’s interconnect technology and WhamCloud. Will Intel develop complete systems?

I’m willing to bet that by 2015, all top 10 systems on the TOP500 list will be GPU/accelerator-based.

Q: So, is there any good news out there in HPC?

Simon: Sure. First, the field is alive and well – there is worldwide interest in HPC as seen by more countries deploying large-scale systems. And if you look at the three swim lanes today, it’s an exciting race with all three approaches thriving. IDC is predicting rapid growth over the next three years and many countries have exascale projects in motion.

Q: But back to the theme of your talk, why won’t we get to exascale by 2020?

Simon: You could say that the end of the HPC world as we know it began in 2004, when we hit the inflection point of power use and clock speed. That’s when we realized that we could not keep increasing clock speed due to power demands (and heat), but needed to move to much greater parallelism.

Exascale has been discussed in numerous workshops, conferences and planning meetings for about six years now. In 2006, I co-organized the first exascale town hall meetings that led to the first exascale report. This was done jointly with Rick Stevens of Argonne and Thomas Zacharia, then of Oak Ridge. The title of the report was “Modeling and Simulation at the Exascale for Energy and the Environment.” In that paper, we noted that we were facing many changes in the design of supercomputers, but we didn’t originally want to call this an “exascale” initiative. It was clear to us that the challenge was in managing new architectures, programming models, dealing with truly massive parallelism and solving the power problem.   But Ray Orbach, then head of the DOE Office of Science, thought “Exascale” would make it easier for Congress to understand and support the concept.  Instead of focusing on the technology challenges and the scientific impact, the initiative was packaged as a race to reach a fixed goal.

I think there continues to be  a lot of vagueness in the overall discussion of exascale, as well as what it means to reach exascale. So, let me propose a concrete and measurable goal: Build a system before 2020 that will be No. 1 on the TOP500 list with an Rmax greater than 1 exaflop/s.

On a side note, I have a personal bet on this with Thomas Lippert, head of the Jülich supercomputing center in Germany, that we will not reach this goal by November 2019. The bet is for $2,000 or €2000, and I think I will win. But I’d rather lose if it means we would have an exascale system by then.

Q: Ok, so you have personal stake in this. But what are the obstacles to getting there?

Simon: It’s not a single big technical issue, but rather a combination of challenges.

The first is just measuring the performance of such a system. Even at petascale, running the LINPACK benchmark is a challenge – you have to turn the whole machine over for 25 to 30 hours. When center managers are under pressure to make as many cycles available as possible, how many 30-hour LINPACK runs can be tolerated? At exascale, it will take five to six days to run the same LINPACK benchmark.

Then there are the total power issues. The K computer uses 12 to 13 megawatts. The machines are scalable, but the buildings, power supplies, etc., are not.

The increasing trend in power efficiency – though it might look like a gradual slope over time, is really a one-time gain that came from switching to accelerator/manycore in 2010. This is not a sustainable trend in the absence of other new technology. There is no more magic – we’re maxed out. Right now, the most efficient system needs one to two megawatts per petaflop/s. Multiply that by 1,000 to get to exascale and the power is simply unaffordable.

Also, data movement will cost more than flops (even on the chip). Limited amounts of memory and low memory/flop ratios will make processing virtually free. In fact, the amount of memory is relatively decreasing, scaling far worse than computation. This is a challenge that’s not being addressed and it’s not going to get less expensive by 2018.

But I do need to point out that there is progress in exascale in the U.S. with many projects now focused and on their way, including DOE’s FastForward, Xstack and co-design centers.

I also think calling the system exa-anything is a bad idea. It’s become a bad brand, associated with buying big machines for a few national labs. It also sets the community up for a perceived failure if we don’t get to exaflops. As an example of avoiding a bad name, the project at CERN was named the Large Hadron Collider, not the “Higgs Boson Finder.” The LHC would have been also successful if there would have been no Higgs, because it would have led to new physics. However, an “exascale” initiative that does not produce an exaflop/s system will likely be seen as a failure, no matter how much great science we can do on the systems being developed.

Q: You mentioned “old” HPC in your presentation. Can you elaborate on that? And maybe explain what you think “new” HPC is?

Simon: We are actually changing the whole computational model and current programming systems have the wrong optimization targets. For example, the “old” HPC constraints were peak clock frequency as the primary limiter for performance improvement; flop/s are the biggest cost for systems, so they are optimized for compute; concurrency was modestly increased by adding nodes; for memory scaling we maintain byte-per-flop capacity and bandwidth; we assume uniform system performance; and reliability is seen as the hardware’s problem.

In “new” HPC, power is the primary design constraint for future HPC system design; data movement dominates costs, so we need to optimize to minimize data movement; to increase concurrency we look to exponential growth of parallelism within chips. As I mentioned, memory scaling is a big constraint, with compute growing two times faster than capacity or bandwidth. Due to heterogeneity, architectural and performance non-uniformity will increase and when it comes to reliability, we cannot count on hardware protection alone.

This “new” reality fundamentally breaks our current programming paradigm and computing ecosystem.

Q: You also mentioned in your talk that exascale computing, if we can call it that, will usher in a different kind of computational science. Can you give an example?

Simon: I think we really need to think about the new applications that will emerge in the next 10 years. The BRAIN Project, or Brain Research through Advancing Innovative Neurotechnologies, is a $100 million proposal by President Obama in his FY2014 budget. The goal is to create real-time traffic maps to provide new insights into brain disorders. As many people know, using HPC to study, understand and simulate brain functions is an ongoing research area. A straightforward extrapolation of the resources needed to create a real-time human brain scale simulation shows we need about 1 to 10 exaflop/s with 4 petabytes of memory. So in addition to all the existing science challenges that require computational resources, there are clearly exciting new ones that the computing community needs to take on.

As an aside, and I always like to make this point: the most optimistic current predictions for exascale computers in 2020 envision a power consumption of – at best – 20 to 30 megawatts. By contrast, the human brain takes about 20 to 40 watts. So, even under best assumptions in 2020, our brain will still be a million times more power efficient.

Q: You’ve addressed half the title of your talk – why we won’t get to exascale by 2020. Can you conclude by talking about why we need exascale computing?

Simon: To maintain the U.S. competitive advantage, we need exascale resources. For example, digital design and prototyping at exascale will enable rapid delivery of new products by minimizing the need for expensive, dangerous, and/or inaccessible testing. I think exascale could be the potential key differentiator for American competitiveness and that we need strategic partnerships between DOE labs and industrial partners to develop and scale applications to exascale levels.

Exascale computing is also key for our national security. Other countries are making plans for exascale and this could impact our security – former Defense Secretary Robert Gates said in a 2011 interview with the New York Times that one nation with a growing global presence is much farther ahead in aircraft design than our intelligence services had thought, and HPC plays a very important role in aircraft design.

Finally, exascale technologies are the foundation for future leadership in computing. We have the lead and shouldn’t declare victory and go home. I recently read Niall Ferguson’s book “Civilization – the West and the Rest”. In the book, Ferguson recalls the story of Zheng He, a Chinese admiral who sailed from China to Indonesia, , to India and as far as the east coast of Africa in 1416. This was decades before Spanish and Portuguese explorers started their voyages. The potential for trade and economic gain from such trade routes was enormous, but the Chinese emperor decided that such exploration was a waste of money and abruptly canceled any further trips – when China was ahead.

The U.S. is not the only country capable of achieving exascale computing. But just like the Chinese emperor in the 15th century, Congress has stopped us now with insufficient funding to move ahead and explore the new frontiers of computing. If we stop now, the country that is first to exascale will have significant competitive, intellectual, technological and economic advantages. And achieving the power efficiency and reliability goals we need for exascale will have enormous positive impacts on consumer electronics and business information technologies and facilities. As I said, other countries are also in this race, motivated both by the tangible advantages to be gained and the national pride of being first to the finish line.

Related Articles

Supercomputing Vet Champions Quantum Cause

Future Challenges of Large-Scale Computing

NNSA’s Sequoia Supercomputer Completes Transition to Classified Work

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire