“No Exascale for You!” An Interview with Berkeley Lab’s Horst Simon

By Nicole Hemsoth

May 15, 2013

Although Horst Simon was named Deputy Director of Lawrence Berkeley National Laboratory, he maintains his strong ties to the scientific computing community as an editor of the TOP500 list and as an invited speaker at conferences.

Twice during the week of May 6, Simon gave back-to-back presentations of a new talk on “Why We Need Exascale and Why We Won’t Get There by 2020.” Not only was the talk a hit with conference attendees, but it also made its way onto Slashdot. In this HPCwire exclusive, Simon talks about his presentation with Jon Bashor of Berkeley Lab.

Simon is well positioned to discuss the path to exascale. An internationally recognized expert in computer science and applied mathematics, he joined Berkeley Lab in 1996 as director of the newly formed National Energy Research Scientific Computing Center (NERSC), and was one of the key architects in establishing NERSC at its new location in Berkeley. Under his leadership NERSC enabled important discoveries for research in fields ranging from global climate modeling to astrophysics. Simon was also the founding director of Berkeley Lab’s Computational Research Division, which conducts applied research and development in computer science, computational science, and applied mathematics.

In his prior role as Associate Lab Director for Computing Sciences, Simon helped to establish Berkeley Lab as a world leader in providing supercomputing resources to support research across a wide spectrum of scientific disciplines. Simon’s research interests are in the development of sparse matrix algorithms, algorithms for large-scale eigenvalue problems, and domain decomposition algorithms for unstructured domains for parallel processing. His algorithm research efforts were honored with the 1988 and the 2009 Gordon Bell Prize for parallel processing research. He was also member of the NASA team that developed the NAS Parallel Benchmarks, a widely used standard for evaluating the performance of massively parallel systems. He is co-editor of the twice-yearly TOP500 list that tracks the most powerful supercomputers worldwide, as well as related architecture and technology trends.

Question: On two consecutive days in early May, you gave a talk on “Why we need Exascale and why we won’t get there by 2020,” first at the IEEE Optical Interconnects meeting in Santa Fe and then at the Cray User Group meeting in Napa. What’s your thinking that led to the presentation?

Horst Simon: Well, everybody is talking about Exascale these days. Petaflop/s systems are firmly established in the HPC ecosystem and people are looking ahead to when we will see an exaflops/s machine. My position is that the methods we have been using to predict when we cross certain thresholds, like teraflop/s and petaflop/s no longer apply.

Q: Why not?

Simon: The TOP500 List, of which I am one of four editors, is marking its 20th anniversary as the chronicler of HPC performance. When it was started 20 years ago, the technology was transitioning from vector systems to massively parallel processing systems, or MPP. Now, back then “massively parallel” referred to machines with 64, 128 or even 256 CPUs. The TOP500 list was created to help understand this transition and to define what was a “supercomputer.”

If you look at the growth curve of performance over those 20 years, it is clearly influenced by Moore’s Law and parallelism. It’s not a surprising trajectory and if in 1992 someone said the first teraflop/s system would appear by such-and-such a date, they had a good chance of being correct. But we can’t say that for the next eight to 10 years. For one thing, it’s not clear what architecture will get us to exascale. Many look at the performance growth that is clearly visible over the last 20 years on the TOP500 list, and then just simply extend the straight line from today for another 10 or 12 years. This “straight line” extrapolation thinking is wrong. I think that the computing world faces a fundamental technology transition that will disrupt this simple extrapolation.

Q: How do current architectures fit into the picture?

Simon: We are currently following three different paths, each of which claims one of the top three slots on the latest TOP500 list.

The multicore path is built around high-end CPUs, such at Intel’s x86, SPARC and IBM’s Power 7. The Manycore/embedded approach uses many simpler, low power cores from embedded systems. Finally, there is the GPU/accelerator path using highly specialized processors from the gaming/graphics market space, such as NVIDIA’s Fermi, the Cell processor and Intel’s Xeon Phi (MIC).

Titan, the No. 1 system at Oak Ridge, uses the GPU/accelerator approach. The manycore embedded processor path has led to Blue Gene, which is as No. 2. And the K computer, using SPARC CPUs, is at No. 3.

One way to look at the race to exascale is as a swim meet. There are three swim lanes, each heading toward the same goal. But who do you bet on to win the race? If you choose too soon, your users cannot follow you. If you choose too late, you fall behind on the performance curve. And if you choose incorrectly, your users face multiple disruptive changes in the technology they rely on.

For the three swim lanes, the multicore path could hit a dead end, as seen by IBM’s cancellation of its contract for Blue Waters. Is this an indication that multicore with complex cores is nearing the end of the line? In the embedded lane, Blue Gene is the last of the line. Will there be any more large-scale embedded multicore machines? And with GPU/accelerators, Intel bought Cray’s interconnect technology and WhamCloud. Will Intel develop complete systems?

I’m willing to bet that by 2015, all top 10 systems on the TOP500 list will be GPU/accelerator-based.

Q: So, is there any good news out there in HPC?

Simon: Sure. First, the field is alive and well – there is worldwide interest in HPC as seen by more countries deploying large-scale systems. And if you look at the three swim lanes today, it’s an exciting race with all three approaches thriving. IDC is predicting rapid growth over the next three years and many countries have exascale projects in motion.

Q: But back to the theme of your talk, why won’t we get to exascale by 2020?

Simon: You could say that the end of the HPC world as we know it began in 2004, when we hit the inflection point of power use and clock speed. That’s when we realized that we could not keep increasing clock speed due to power demands (and heat), but needed to move to much greater parallelism.

Exascale has been discussed in numerous workshops, conferences and planning meetings for about six years now. In 2006, I co-organized the first exascale town hall meetings that led to the first exascale report. This was done jointly with Rick Stevens of Argonne and Thomas Zacharia, then of Oak Ridge. The title of the report was “Modeling and Simulation at the Exascale for Energy and the Environment.” In that paper, we noted that we were facing many changes in the design of supercomputers, but we didn’t originally want to call this an “exascale” initiative. It was clear to us that the challenge was in managing new architectures, programming models, dealing with truly massive parallelism and solving the power problem.   But Ray Orbach, then head of the DOE Office of Science, thought “Exascale” would make it easier for Congress to understand and support the concept.  Instead of focusing on the technology challenges and the scientific impact, the initiative was packaged as a race to reach a fixed goal.

I think there continues to be  a lot of vagueness in the overall discussion of exascale, as well as what it means to reach exascale. So, let me propose a concrete and measurable goal: Build a system before 2020 that will be No. 1 on the TOP500 list with an Rmax greater than 1 exaflop/s.

On a side note, I have a personal bet on this with Thomas Lippert, head of the Jülich supercomputing center in Germany, that we will not reach this goal by November 2019. The bet is for $2,000 or €2000, and I think I will win. But I’d rather lose if it means we would have an exascale system by then.

Q: Ok, so you have personal stake in this. But what are the obstacles to getting there?

Simon: It’s not a single big technical issue, but rather a combination of challenges.

The first is just measuring the performance of such a system. Even at petascale, running the LINPACK benchmark is a challenge – you have to turn the whole machine over for 25 to 30 hours. When center managers are under pressure to make as many cycles available as possible, how many 30-hour LINPACK runs can be tolerated? At exascale, it will take five to six days to run the same LINPACK benchmark.

Then there are the total power issues. The K computer uses 12 to 13 megawatts. The machines are scalable, but the buildings, power supplies, etc., are not.

The increasing trend in power efficiency – though it might look like a gradual slope over time, is really a one-time gain that came from switching to accelerator/manycore in 2010. This is not a sustainable trend in the absence of other new technology. There is no more magic – we’re maxed out. Right now, the most efficient system needs one to two megawatts per petaflop/s. Multiply that by 1,000 to get to exascale and the power is simply unaffordable.

Also, data movement will cost more than flops (even on the chip). Limited amounts of memory and low memory/flop ratios will make processing virtually free. In fact, the amount of memory is relatively decreasing, scaling far worse than computation. This is a challenge that’s not being addressed and it’s not going to get less expensive by 2018.

But I do need to point out that there is progress in exascale in the U.S. with many projects now focused and on their way, including DOE’s FastForward, Xstack and co-design centers.

I also think calling the system exa-anything is a bad idea. It’s become a bad brand, associated with buying big machines for a few national labs. It also sets the community up for a perceived failure if we don’t get to exaflops. As an example of avoiding a bad name, the project at CERN was named the Large Hadron Collider, not the “Higgs Boson Finder.” The LHC would have been also successful if there would have been no Higgs, because it would have led to new physics. However, an “exascale” initiative that does not produce an exaflop/s system will likely be seen as a failure, no matter how much great science we can do on the systems being developed.

Q: You mentioned “old” HPC in your presentation. Can you elaborate on that? And maybe explain what you think “new” HPC is?

Simon: We are actually changing the whole computational model and current programming systems have the wrong optimization targets. For example, the “old” HPC constraints were peak clock frequency as the primary limiter for performance improvement; flop/s are the biggest cost for systems, so they are optimized for compute; concurrency was modestly increased by adding nodes; for memory scaling we maintain byte-per-flop capacity and bandwidth; we assume uniform system performance; and reliability is seen as the hardware’s problem.

In “new” HPC, power is the primary design constraint for future HPC system design; data movement dominates costs, so we need to optimize to minimize data movement; to increase concurrency we look to exponential growth of parallelism within chips. As I mentioned, memory scaling is a big constraint, with compute growing two times faster than capacity or bandwidth. Due to heterogeneity, architectural and performance non-uniformity will increase and when it comes to reliability, we cannot count on hardware protection alone.

This “new” reality fundamentally breaks our current programming paradigm and computing ecosystem.

Q: You also mentioned in your talk that exascale computing, if we can call it that, will usher in a different kind of computational science. Can you give an example?

Simon: I think we really need to think about the new applications that will emerge in the next 10 years. The BRAIN Project, or Brain Research through Advancing Innovative Neurotechnologies, is a $100 million proposal by President Obama in his FY2014 budget. The goal is to create real-time traffic maps to provide new insights into brain disorders. As many people know, using HPC to study, understand and simulate brain functions is an ongoing research area. A straightforward extrapolation of the resources needed to create a real-time human brain scale simulation shows we need about 1 to 10 exaflop/s with 4 petabytes of memory. So in addition to all the existing science challenges that require computational resources, there are clearly exciting new ones that the computing community needs to take on.

As an aside, and I always like to make this point: the most optimistic current predictions for exascale computers in 2020 envision a power consumption of – at best – 20 to 30 megawatts. By contrast, the human brain takes about 20 to 40 watts. So, even under best assumptions in 2020, our brain will still be a million times more power efficient.

Q: You’ve addressed half the title of your talk – why we won’t get to exascale by 2020. Can you conclude by talking about why we need exascale computing?

Simon: To maintain the U.S. competitive advantage, we need exascale resources. For example, digital design and prototyping at exascale will enable rapid delivery of new products by minimizing the need for expensive, dangerous, and/or inaccessible testing. I think exascale could be the potential key differentiator for American competitiveness and that we need strategic partnerships between DOE labs and industrial partners to develop and scale applications to exascale levels.

Exascale computing is also key for our national security. Other countries are making plans for exascale and this could impact our security – former Defense Secretary Robert Gates said in a 2011 interview with the New York Times that one nation with a growing global presence is much farther ahead in aircraft design than our intelligence services had thought, and HPC plays a very important role in aircraft design.

Finally, exascale technologies are the foundation for future leadership in computing. We have the lead and shouldn’t declare victory and go home. I recently read Niall Ferguson’s book “Civilization – the West and the Rest”. In the book, Ferguson recalls the story of Zheng He, a Chinese admiral who sailed from China to Indonesia, , to India and as far as the east coast of Africa in 1416. This was decades before Spanish and Portuguese explorers started their voyages. The potential for trade and economic gain from such trade routes was enormous, but the Chinese emperor decided that such exploration was a waste of money and abruptly canceled any further trips – when China was ahead.

The U.S. is not the only country capable of achieving exascale computing. But just like the Chinese emperor in the 15th century, Congress has stopped us now with insufficient funding to move ahead and explore the new frontiers of computing. If we stop now, the country that is first to exascale will have significant competitive, intellectual, technological and economic advantages. And achieving the power efficiency and reliability goals we need for exascale will have enormous positive impacts on consumer electronics and business information technologies and facilities. As I said, other countries are also in this race, motivated both by the tangible advantages to be gained and the national pride of being first to the finish line.

Related Articles

Supercomputing Vet Champions Quantum Cause

Future Challenges of Large-Scale Computing

NNSA’s Sequoia Supercomputer Completes Transition to Classified Work

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This