“No Exascale for You!” An Interview with Berkeley Lab’s Horst Simon

By Nicole Hemsoth

May 15, 2013

Although Horst Simon was named Deputy Director of Lawrence Berkeley National Laboratory, he maintains his strong ties to the scientific computing community as an editor of the TOP500 list and as an invited speaker at conferences.

Twice during the week of May 6, Simon gave back-to-back presentations of a new talk on “Why We Need Exascale and Why We Won’t Get There by 2020.” Not only was the talk a hit with conference attendees, but it also made its way onto Slashdot. In this HPCwire exclusive, Simon talks about his presentation with Jon Bashor of Berkeley Lab.

Simon is well positioned to discuss the path to exascale. An internationally recognized expert in computer science and applied mathematics, he joined Berkeley Lab in 1996 as director of the newly formed National Energy Research Scientific Computing Center (NERSC), and was one of the key architects in establishing NERSC at its new location in Berkeley. Under his leadership NERSC enabled important discoveries for research in fields ranging from global climate modeling to astrophysics. Simon was also the founding director of Berkeley Lab’s Computational Research Division, which conducts applied research and development in computer science, computational science, and applied mathematics.

In his prior role as Associate Lab Director for Computing Sciences, Simon helped to establish Berkeley Lab as a world leader in providing supercomputing resources to support research across a wide spectrum of scientific disciplines. Simon’s research interests are in the development of sparse matrix algorithms, algorithms for large-scale eigenvalue problems, and domain decomposition algorithms for unstructured domains for parallel processing. His algorithm research efforts were honored with the 1988 and the 2009 Gordon Bell Prize for parallel processing research. He was also member of the NASA team that developed the NAS Parallel Benchmarks, a widely used standard for evaluating the performance of massively parallel systems. He is co-editor of the twice-yearly TOP500 list that tracks the most powerful supercomputers worldwide, as well as related architecture and technology trends.

Question: On two consecutive days in early May, you gave a talk on “Why we need Exascale and why we won’t get there by 2020,” first at the IEEE Optical Interconnects meeting in Santa Fe and then at the Cray User Group meeting in Napa. What’s your thinking that led to the presentation?

Horst Simon: Well, everybody is talking about Exascale these days. Petaflop/s systems are firmly established in the HPC ecosystem and people are looking ahead to when we will see an exaflops/s machine. My position is that the methods we have been using to predict when we cross certain thresholds, like teraflop/s and petaflop/s no longer apply.

Q: Why not?

Simon: The TOP500 List, of which I am one of four editors, is marking its 20th anniversary as the chronicler of HPC performance. When it was started 20 years ago, the technology was transitioning from vector systems to massively parallel processing systems, or MPP. Now, back then “massively parallel” referred to machines with 64, 128 or even 256 CPUs. The TOP500 list was created to help understand this transition and to define what was a “supercomputer.”

If you look at the growth curve of performance over those 20 years, it is clearly influenced by Moore’s Law and parallelism. It’s not a surprising trajectory and if in 1992 someone said the first teraflop/s system would appear by such-and-such a date, they had a good chance of being correct. But we can’t say that for the next eight to 10 years. For one thing, it’s not clear what architecture will get us to exascale. Many look at the performance growth that is clearly visible over the last 20 years on the TOP500 list, and then just simply extend the straight line from today for another 10 or 12 years. This “straight line” extrapolation thinking is wrong. I think that the computing world faces a fundamental technology transition that will disrupt this simple extrapolation.

Q: How do current architectures fit into the picture?

Simon: We are currently following three different paths, each of which claims one of the top three slots on the latest TOP500 list.

The multicore path is built around high-end CPUs, such at Intel’s x86, SPARC and IBM’s Power 7. The Manycore/embedded approach uses many simpler, low power cores from embedded systems. Finally, there is the GPU/accelerator path using highly specialized processors from the gaming/graphics market space, such as NVIDIA’s Fermi, the Cell processor and Intel’s Xeon Phi (MIC).

Titan, the No. 1 system at Oak Ridge, uses the GPU/accelerator approach. The manycore embedded processor path has led to Blue Gene, which is as No. 2. And the K computer, using SPARC CPUs, is at No. 3.

One way to look at the race to exascale is as a swim meet. There are three swim lanes, each heading toward the same goal. But who do you bet on to win the race? If you choose too soon, your users cannot follow you. If you choose too late, you fall behind on the performance curve. And if you choose incorrectly, your users face multiple disruptive changes in the technology they rely on.

For the three swim lanes, the multicore path could hit a dead end, as seen by IBM’s cancellation of its contract for Blue Waters. Is this an indication that multicore with complex cores is nearing the end of the line? In the embedded lane, Blue Gene is the last of the line. Will there be any more large-scale embedded multicore machines? And with GPU/accelerators, Intel bought Cray’s interconnect technology and WhamCloud. Will Intel develop complete systems?

I’m willing to bet that by 2015, all top 10 systems on the TOP500 list will be GPU/accelerator-based.

Q: So, is there any good news out there in HPC?

Simon: Sure. First, the field is alive and well – there is worldwide interest in HPC as seen by more countries deploying large-scale systems. And if you look at the three swim lanes today, it’s an exciting race with all three approaches thriving. IDC is predicting rapid growth over the next three years and many countries have exascale projects in motion.

Q: But back to the theme of your talk, why won’t we get to exascale by 2020?

Simon: You could say that the end of the HPC world as we know it began in 2004, when we hit the inflection point of power use and clock speed. That’s when we realized that we could not keep increasing clock speed due to power demands (and heat), but needed to move to much greater parallelism.

Exascale has been discussed in numerous workshops, conferences and planning meetings for about six years now. In 2006, I co-organized the first exascale town hall meetings that led to the first exascale report. This was done jointly with Rick Stevens of Argonne and Thomas Zacharia, then of Oak Ridge. The title of the report was “Modeling and Simulation at the Exascale for Energy and the Environment.” In that paper, we noted that we were facing many changes in the design of supercomputers, but we didn’t originally want to call this an “exascale” initiative. It was clear to us that the challenge was in managing new architectures, programming models, dealing with truly massive parallelism and solving the power problem.   But Ray Orbach, then head of the DOE Office of Science, thought “Exascale” would make it easier for Congress to understand and support the concept.  Instead of focusing on the technology challenges and the scientific impact, the initiative was packaged as a race to reach a fixed goal.

I think there continues to be  a lot of vagueness in the overall discussion of exascale, as well as what it means to reach exascale. So, let me propose a concrete and measurable goal: Build a system before 2020 that will be No. 1 on the TOP500 list with an Rmax greater than 1 exaflop/s.

On a side note, I have a personal bet on this with Thomas Lippert, head of the Jülich supercomputing center in Germany, that we will not reach this goal by November 2019. The bet is for $2,000 or €2000, and I think I will win. But I’d rather lose if it means we would have an exascale system by then.

Q: Ok, so you have personal stake in this. But what are the obstacles to getting there?

Simon: It’s not a single big technical issue, but rather a combination of challenges.

The first is just measuring the performance of such a system. Even at petascale, running the LINPACK benchmark is a challenge – you have to turn the whole machine over for 25 to 30 hours. When center managers are under pressure to make as many cycles available as possible, how many 30-hour LINPACK runs can be tolerated? At exascale, it will take five to six days to run the same LINPACK benchmark.

Then there are the total power issues. The K computer uses 12 to 13 megawatts. The machines are scalable, but the buildings, power supplies, etc., are not.

The increasing trend in power efficiency – though it might look like a gradual slope over time, is really a one-time gain that came from switching to accelerator/manycore in 2010. This is not a sustainable trend in the absence of other new technology. There is no more magic – we’re maxed out. Right now, the most efficient system needs one to two megawatts per petaflop/s. Multiply that by 1,000 to get to exascale and the power is simply unaffordable.

Also, data movement will cost more than flops (even on the chip). Limited amounts of memory and low memory/flop ratios will make processing virtually free. In fact, the amount of memory is relatively decreasing, scaling far worse than computation. This is a challenge that’s not being addressed and it’s not going to get less expensive by 2018.

But I do need to point out that there is progress in exascale in the U.S. with many projects now focused and on their way, including DOE’s FastForward, Xstack and co-design centers.

I also think calling the system exa-anything is a bad idea. It’s become a bad brand, associated with buying big machines for a few national labs. It also sets the community up for a perceived failure if we don’t get to exaflops. As an example of avoiding a bad name, the project at CERN was named the Large Hadron Collider, not the “Higgs Boson Finder.” The LHC would have been also successful if there would have been no Higgs, because it would have led to new physics. However, an “exascale” initiative that does not produce an exaflop/s system will likely be seen as a failure, no matter how much great science we can do on the systems being developed.

Q: You mentioned “old” HPC in your presentation. Can you elaborate on that? And maybe explain what you think “new” HPC is?

Simon: We are actually changing the whole computational model and current programming systems have the wrong optimization targets. For example, the “old” HPC constraints were peak clock frequency as the primary limiter for performance improvement; flop/s are the biggest cost for systems, so they are optimized for compute; concurrency was modestly increased by adding nodes; for memory scaling we maintain byte-per-flop capacity and bandwidth; we assume uniform system performance; and reliability is seen as the hardware’s problem.

In “new” HPC, power is the primary design constraint for future HPC system design; data movement dominates costs, so we need to optimize to minimize data movement; to increase concurrency we look to exponential growth of parallelism within chips. As I mentioned, memory scaling is a big constraint, with compute growing two times faster than capacity or bandwidth. Due to heterogeneity, architectural and performance non-uniformity will increase and when it comes to reliability, we cannot count on hardware protection alone.

This “new” reality fundamentally breaks our current programming paradigm and computing ecosystem.

Q: You also mentioned in your talk that exascale computing, if we can call it that, will usher in a different kind of computational science. Can you give an example?

Simon: I think we really need to think about the new applications that will emerge in the next 10 years. The BRAIN Project, or Brain Research through Advancing Innovative Neurotechnologies, is a $100 million proposal by President Obama in his FY2014 budget. The goal is to create real-time traffic maps to provide new insights into brain disorders. As many people know, using HPC to study, understand and simulate brain functions is an ongoing research area. A straightforward extrapolation of the resources needed to create a real-time human brain scale simulation shows we need about 1 to 10 exaflop/s with 4 petabytes of memory. So in addition to all the existing science challenges that require computational resources, there are clearly exciting new ones that the computing community needs to take on.

As an aside, and I always like to make this point: the most optimistic current predictions for exascale computers in 2020 envision a power consumption of – at best – 20 to 30 megawatts. By contrast, the human brain takes about 20 to 40 watts. So, even under best assumptions in 2020, our brain will still be a million times more power efficient.

Q: You’ve addressed half the title of your talk – why we won’t get to exascale by 2020. Can you conclude by talking about why we need exascale computing?

Simon: To maintain the U.S. competitive advantage, we need exascale resources. For example, digital design and prototyping at exascale will enable rapid delivery of new products by minimizing the need for expensive, dangerous, and/or inaccessible testing. I think exascale could be the potential key differentiator for American competitiveness and that we need strategic partnerships between DOE labs and industrial partners to develop and scale applications to exascale levels.

Exascale computing is also key for our national security. Other countries are making plans for exascale and this could impact our security – former Defense Secretary Robert Gates said in a 2011 interview with the New York Times that one nation with a growing global presence is much farther ahead in aircraft design than our intelligence services had thought, and HPC plays a very important role in aircraft design.

Finally, exascale technologies are the foundation for future leadership in computing. We have the lead and shouldn’t declare victory and go home. I recently read Niall Ferguson’s book “Civilization – the West and the Rest”. In the book, Ferguson recalls the story of Zheng He, a Chinese admiral who sailed from China to Indonesia, , to India and as far as the east coast of Africa in 1416. This was decades before Spanish and Portuguese explorers started their voyages. The potential for trade and economic gain from such trade routes was enormous, but the Chinese emperor decided that such exploration was a waste of money and abruptly canceled any further trips – when China was ahead.

The U.S. is not the only country capable of achieving exascale computing. But just like the Chinese emperor in the 15th century, Congress has stopped us now with insufficient funding to move ahead and explore the new frontiers of computing. If we stop now, the country that is first to exascale will have significant competitive, intellectual, technological and economic advantages. And achieving the power efficiency and reliability goals we need for exascale will have enormous positive impacts on consumer electronics and business information technologies and facilities. As I said, other countries are also in this race, motivated both by the tangible advantages to be gained and the national pride of being first to the finish line.

Related Articles

Supercomputing Vet Champions Quantum Cause

Future Challenges of Large-Scale Computing

NNSA’s Sequoia Supercomputer Completes Transition to Classified Work

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This