Avoiding Scientific Computing Bottlenecks in the Cloud

By Ian Armas Foster

May 17, 2013

Yesterday, HPC in the Cloud discussed the prospect of running scientific computing applications in the cloud on Amazon’s CPU and GPU cores in EC2, particularly with regard to computational fluid dynamics. It is fitting then that HPC Experiment, a research initiative comprised of teams of IT engineers, experts, and analysts, hosted a presentation on the subject this week.

Frank Ding, Engineering Analysis & Technical Computing Manager at Simpson Strong-Tie, discussed the advantages of utilizing the cloud for occasional scientific computing, identified the obstacles to doing so, and proposed workarounds to some of those obstacles.

“Realistic modeling is the key to getting good model fidelity,” Ding said on the goals of scientific computing in general and how to attain them. “HPC is required to get good turnaround time in simulations and also to solve large models.”

Specifically, Ding spoke of these large models as they related to running structural analysis in the Abaqus software suite. “The goal is to shorten the product model cycle and reduce the number of physical prototypes,” Ding said on what his group is using Abaqus for and the overall goals they hope to achieve through HPC. Below is an example of the type of problem on which Ding’s group worked.

 

Their group has to evaluate the structural integrity of materials that are ‘non-linear,’ meaning their density varies over the volume of the material. As a result, high-fidelity modeling is required to essentially map out cubic inch of the material as it reacts to various stresses.

Ding’s HPC cluster is a 4-node, 32-core that utilizes Nehalem-based Xeon processors and InfiniBand DDR. They used that system to compute concrete anchor bolt tension capacity, a process that had to take into account 1.9 million degrees of freedom, where a degree of freedom in structural mechanics simply represents a point or object that can move and must be considered.

In short, Ding said that, “If I have a large job, I will be limited by current capacity.”

On 32 cores, the simulation required 11 and a half hours of runtime, but his team looked to cut down that runtime by hosting some data and computations in a cloud setting. Outsourcing those capabilities to a cloud is a more reasonable financial option than simply expanding or even revamping their existing HPC cluster. Of course, various performance and latency concerns pop up when computing is moved to the cloud. For Ding, one of those more important and underrated obstacles is the internet bandwidth of the end user.

While this handicap was apparent to Ding’s group in particular, it is reasonable to believe they are not the only group with that potential problem. The optimal bandwidth at which to shuttle information for this kind of project is, according to Ding, around five megabits on a desktop. That number actually represents an attainable average over time, so the problem lies in variability and randomness.

For example, sometimes the internet will run at ten Mbps. Other times, it will run ten times slower. That represents a variability of 70 to 80 percent, according to Ding–an unacceptable figure when important computations are being carried out.

As such, Ding noted that “end point internet bandwidth and randomness is the top barrier for good end user experience.” To combat that unreliability, Ding suggested employing a job monitoring system that recognizes when bandwidth is slower and adjusts accordingly. While adding another software layer to the existing Abaqus system in their case may not be ideal, it would help alleviate bottleneck issues that can set projects back for hours. “Some workflow details have been advised to improve end user experience, such as job monitoring,” Ding said.

He also pointed to virtualization and a solution manager layer to further cut down on bottlenecks. Virtualizing throughout an institution’s HPC cluster could cut down on accumulation, meaning the clusters (the in-house one and the one in the cloud) would not have to undergo delay-inducing large data transfers. A solution manager would be key in identifying which specific cores and points are underperforming or lacking in bandwidth, reducing the loads on those individual cores when necessary.

Currently, according to Ding, 450 people are participating in the HPC Experiment across 80 teams that have been formed over three ‘rounds.’ “Each team,” Ding explained, “consists of an end user, a resource provider, a software provider, and an expert and these parties come together to resolve the problem the end user is facing in HPC in the cloud.”

Of those eighty teams, many hail from institutions that have in-house HPC systems, but they are not always expansive enough to cover those institutions’ needs for especially intensive computations. Work like this is important to ensure science’s continued advancement, which is facilitated by more and more institutions gaining access to high performance computing. Going forward, deploying some of that computing in the cloud will hopefully make such computing more accessible.

Related Articles

Overcoming the Cloud Security Barrier for Financial Services

Running Computational Fluid Dynamics in the Cloud

HPC and the True Cost of Cloud

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire