CERN, Google, and the Future of Global Science Initiatives

By Ian Armas Foster

May 21, 2013

Large-scale, worldwide scientific initiatives, such as the one that found the Higgs Boson or the one that is currently researching the depths of proteomics, rely on some cloud-based system to both coordinate efforts and manage computational efforts at peak times that cannot be contained within the combined in-house HPC resources.

Last week at Google I/O, Brookhaven National Lab’s Sergey Panitkin discussed the role of the Google Compute Engine in providing computational support to ATLAS, a detector of high-energy particles at the Large Hadron Collider (LHC).

On July 4 of last year, one of the largest physics experiments in history announced the finding of the Higgs Boson. The discovery was another step in the verification of the Standard Model of elementary particles, and it was largely a result of the data collected by the ATLAS detector that was later stored, analyzed, and used in simulations in computational centers around the world.

Naturally, CERN is equipped with significant computational capabilities as it sifts through the swaths of data created by the LHC. However, a great deal of that data was being sent out to scientists across the world in over a hundred computing centers located in over 40 countries.

As a result, Google stepped forward in August of last year to offer its Compute Engine services for overflow scientific computing periods. According to Panitkin, those spikes would occur before major conferences, overloading the existing computational framework. These overflow spikes represent an intriguing phenomenon, a macro-scale example of a problem that many mid-sized research institutions face on their own. Many of those institutions house their own HPC cluster that handles the majority of their heavy duty computational leg-work. When those resources are exhausted at peak times, they turn to the cloud.

When that problem manifests itself at key times across a research project that spans hundreds of facilities across the globe, that becomes a massive, worldwide HPC cloud computing challenge.

As such, the ATLAS project was invited by Google to test the Google Compute Engine in an effort to complete that challenge.

The experience has gone well so far, according to Panitkin. “All in all, we had a great experience with Google Computing. We tested several computational scenarios on that platform…we think that Google Compute Engine is a modern cloud infrastructure that can serve as a stable, high performance platform for scientific computing.”

The ATLAS collector, diagrammed below, was designed to intake and record 800 million proton-proton interactions per second. Of those 800 million collisions per second, only about 0.0002 Higgs signatures are detected per second. That translates to one signature for every 83 minutes or so. The computing systems have to sift through that huge dataset containing information from each of those almost billion interactions a second to find that one distinct pattern.

Thankfully, much of the ATLAS data is instantly filtered and discarded by an automatic trigger system. Were this not the case, the collector would generate a slightly unsustainable petabyte of data per second.

Adding to the challenge that the enormous amount of data presents is the very particular signature the ATLAS project was looking for. According to Panitkin, sifting through that much is akin to trying to find just one person in a system of a thousand planets of the same population as Earth. To help visualize what that looks like, the above picture represents all the possible signatures while the diagram below shows the one specific indicator of the Higgs Boson.

CERN collects the data and initially distributes it to its 11 tier-one centers, as shown in the diagram below. The cloud and specifically the Google Compute Engine enter the picture in tier two, where about two hundred centers across the globe simulate their respective sections based on the tier-naught CERN data.

Combining all of those resources into a shared system is essential for scientific researchers, as they cull information from other tests and simulations run. According to Andrew Hanushevsky, who presented alongside Panitkin at the Google I/O event, the system was aggregated using the XRootD system. XRootD, coupled with cmsd, was instrumental and combining and managing the thousand-core PROOF cluster made for ATLAS as well as the 4000-core HTCondor cluster for CERN’s collision analysis.

The important aspect was ensuring the system acted as one, as Hanushevsky explained. “This is a B tree, we can split it up anyway we want and this is great for doing cloud deployment. Part of that tree can be inside the GCE, another part can be in a private cloud, another part in a private cluster, and we can piece that all together to make it look like one big cluster.”

With that in place, the researchers could share information across the network at an impressive transfer rate of 57 Mbps transfer rate to the Google Compute Engine.

Finally, according to Panitkin, the computations done over GCE were impressively accurate. The system reported, according to Panitkin, “no failures due to Google Compute Engine.”

The best science requires extensive collaboration. Global projects such as the one that found the Higgs Boson mark the pinnacle of that collaboration, and these efforts can only grow stronger with the betterment of large-scale cloud-based computing services like Google Compute Engine.

Related Articles

Avoiding Scientific Computing Bottlenecks in the Cloud

On the Verge of Cloud 2.0

Running Computational Fluid Dynamics in the Cloud

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This