CERN, Google, and the Future of Global Science Initiatives

By Ian Armas Foster

May 21, 2013

Large-scale, worldwide scientific initiatives, such as the one that found the Higgs Boson or the one that is currently researching the depths of proteomics, rely on some cloud-based system to both coordinate efforts and manage computational efforts at peak times that cannot be contained within the combined in-house HPC resources.

Last week at Google I/O, Brookhaven National Lab’s Sergey Panitkin discussed the role of the Google Compute Engine in providing computational support to ATLAS, a detector of high-energy particles at the Large Hadron Collider (LHC).

On July 4 of last year, one of the largest physics experiments in history announced the finding of the Higgs Boson. The discovery was another step in the verification of the Standard Model of elementary particles, and it was largely a result of the data collected by the ATLAS detector that was later stored, analyzed, and used in simulations in computational centers around the world.

Naturally, CERN is equipped with significant computational capabilities as it sifts through the swaths of data created by the LHC. However, a great deal of that data was being sent out to scientists across the world in over a hundred computing centers located in over 40 countries.

As a result, Google stepped forward in August of last year to offer its Compute Engine services for overflow scientific computing periods. According to Panitkin, those spikes would occur before major conferences, overloading the existing computational framework. These overflow spikes represent an intriguing phenomenon, a macro-scale example of a problem that many mid-sized research institutions face on their own. Many of those institutions house their own HPC cluster that handles the majority of their heavy duty computational leg-work. When those resources are exhausted at peak times, they turn to the cloud.

When that problem manifests itself at key times across a research project that spans hundreds of facilities across the globe, that becomes a massive, worldwide HPC cloud computing challenge.

As such, the ATLAS project was invited by Google to test the Google Compute Engine in an effort to complete that challenge.

The experience has gone well so far, according to Panitkin. “All in all, we had a great experience with Google Computing. We tested several computational scenarios on that platform…we think that Google Compute Engine is a modern cloud infrastructure that can serve as a stable, high performance platform for scientific computing.”

The ATLAS collector, diagrammed below, was designed to intake and record 800 million proton-proton interactions per second. Of those 800 million collisions per second, only about 0.0002 Higgs signatures are detected per second. That translates to one signature for every 83 minutes or so. The computing systems have to sift through that huge dataset containing information from each of those almost billion interactions a second to find that one distinct pattern.

Thankfully, much of the ATLAS data is instantly filtered and discarded by an automatic trigger system. Were this not the case, the collector would generate a slightly unsustainable petabyte of data per second.

Adding to the challenge that the enormous amount of data presents is the very particular signature the ATLAS project was looking for. According to Panitkin, sifting through that much is akin to trying to find just one person in a system of a thousand planets of the same population as Earth. To help visualize what that looks like, the above picture represents all the possible signatures while the diagram below shows the one specific indicator of the Higgs Boson.

CERN collects the data and initially distributes it to its 11 tier-one centers, as shown in the diagram below. The cloud and specifically the Google Compute Engine enter the picture in tier two, where about two hundred centers across the globe simulate their respective sections based on the tier-naught CERN data.

Combining all of those resources into a shared system is essential for scientific researchers, as they cull information from other tests and simulations run. According to Andrew Hanushevsky, who presented alongside Panitkin at the Google I/O event, the system was aggregated using the XRootD system. XRootD, coupled with cmsd, was instrumental and combining and managing the thousand-core PROOF cluster made for ATLAS as well as the 4000-core HTCondor cluster for CERN’s collision analysis.

The important aspect was ensuring the system acted as one, as Hanushevsky explained. “This is a B tree, we can split it up anyway we want and this is great for doing cloud deployment. Part of that tree can be inside the GCE, another part can be in a private cloud, another part in a private cluster, and we can piece that all together to make it look like one big cluster.”

With that in place, the researchers could share information across the network at an impressive transfer rate of 57 Mbps transfer rate to the Google Compute Engine.

Finally, according to Panitkin, the computations done over GCE were impressively accurate. The system reported, according to Panitkin, “no failures due to Google Compute Engine.”

The best science requires extensive collaboration. Global projects such as the one that found the Higgs Boson mark the pinnacle of that collaboration, and these efforts can only grow stronger with the betterment of large-scale cloud-based computing services like Google Compute Engine.

Related Articles

Avoiding Scientific Computing Bottlenecks in the Cloud

On the Verge of Cloud 2.0

Running Computational Fluid Dynamics in the Cloud

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This