CERN, Google Drive Future of Global Science Initiatives

By Ian Armas Foster

May 21, 2013

Large-scale, worldwide scientific initiatives, such as the one that found the Higgs Boson or the one that is currently researching the depths of proteomics, rely on some cloud-based system to both coordinate efforts and manage computational efforts at peak times that cannot be contained within the combined in-house HPC resources.

Last week at Google I/O, Brookhaven National Lab’s Sergey Panitkin discussed the role of the Google Compute Engine in providing computational support to ATLAS, a detector of high-energy particles at the Large Hadron Collider (LHC).

On July 4 of last year, one of the largest physics experiments in history announced the finding of the Higgs Boson. The discovery was another step in the verification of the Standard Model of elementary particles, and it was largely a result of the data collected by the ATLAS detector that was later stored, analyzed, and used in simulations in computational centers around the world.

Naturally, CERN is equipped with significant computational capabilities as it sifts through the swaths of data created by the LHC. However, a great deal of that data was being sent out to scientists across the world in over a hundred computing centers located in over 40 countries.

As a result, Google stepped forward in August of last year to offer its Compute Engine services for overflow scientific computing periods. According to Panitkin, those spikes would occur before major conferences, overloading the existing computational framework. These overflow spikes represent an intriguing phenomenon, a macro-scale example of a problem that many mid-sized research institutions face on their own. Many of those institutions house their own HPC cluster that handles the majority of their heavy duty computational leg-work. When those resources are exhausted at peak times, they turn to the cloud.

When that problem manifests itself at key times across a research project that spans hundreds of facilities across the globe, that becomes a massive, worldwide HPC cloud computing challenge.

As such, the ATLAS project was invited by Google to test the Google Compute Engine in an effort to complete that challenge.

The experience has gone well so far, according to Panitkin. “All in all, we had a great experience with Google Computing. We tested several computational scenarios on that platform…we think that Google Compute Engine is a modern cloud infrastructure that can serve as a stable, high performance platform for scientific computing.”

The ATLAS collector, diagrammed below, was designed to intake and record 800 million proton-proton interactions per second. Of those 800 million collisions per second, only about 0.0002 Higgs signatures are detected per second. That translates to one signature for every 83 minutes or so. The computing systems have to sift through that huge dataset containing information from each of those almost billion interactions a second to find that one distinct pattern.

Thankfully, much of the ATLAS data is instantly filtered and discarded by an automatic trigger system. Were this not the case, the collector would generate a slightly unsustainable petabyte of data per second.

Adding to the challenge that the enormous amount of data presents is the very particular signature the ATLAS project was looking for. According to Panitkin, sifting through that much is akin to trying to find just one person in a system of a thousand planets of the same population as Earth. To help visualize what that looks like, the above picture represents all the possible signatures while the diagram below shows the one specific indicator of the Higgs Boson.

CERN collects the data and initially distributes it to its 11 tier-one centers, as shown in the diagram below. The cloud and specifically the Google Compute Engine enter the picture in tier two, where about two hundred centers across the globe simulate their respective sections based on the tier-naught CERN data.

Combining all of those resources into a shared system is essential for scientific researchers, as they cull information from other tests and simulations run. According to Andrew Hanushevsky, who presented alongside Panitkin at the Google I/O event, the system was aggregated using the XRootD system. XRootD, coupled with cmsd, was instrumental and combining and managing the thousand-core PROOF cluster made for ATLAS as well as the 4000-core HTCondor cluster for CERN’s collision analysis.

The important aspect was ensuring the system acted as one, as Hanushevsky explained. “This is a B tree, we can split it up anyway we want and this is great for doing cloud deployment. Part of that tree can be inside the GCE, another part can be in a private cloud, another part in a private cluster, and we can piece that all together to make it look like one big cluster.”

With that in place, the researchers could share information across the network at an impressive transfer rate of 57 Mbps transfer rate to the Google Compute Engine.

Finally, according to Panitkin, the computations done over GCE were impressively accurate. The system reported, according to Panitkin, “no failures due to Google Compute Engine.”

The best science requires extensive collaboration. Global projects such as the one that found the Higgs Boson mark the pinnacle of that collaboration, and these efforts can only grow stronger with the betterment of large-scale cloud-based computing services like Google Compute Engine.

Related Articles

Avoiding Scientific Computing Bottlenecks in the Cloud

On the Verge of Cloud 2.0

Running Computational Fluid Dynamics in the Cloud

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This