CERN, Google Drive Future of Global Science Initiatives

By Ian Armas Foster

May 21, 2013

Large-scale, worldwide scientific initiatives, such as the one that found the Higgs Boson or the one that is currently researching the depths of proteomics, rely on some cloud-based system to both coordinate efforts and manage computational efforts at peak times that cannot be contained within the combined in-house HPC resources.

Last week at Google I/O, Brookhaven National Lab’s Sergey Panitkin discussed the role of the Google Compute Engine in providing computational support to ATLAS, a detector of high-energy particles at the Large Hadron Collider (LHC).

On July 4 of last year, one of the largest physics experiments in history announced the finding of the Higgs Boson. The discovery was another step in the verification of the Standard Model of elementary particles, and it was largely a result of the data collected by the ATLAS detector that was later stored, analyzed, and used in simulations in computational centers around the world.

Naturally, CERN is equipped with significant computational capabilities as it sifts through the swaths of data created by the LHC. However, a great deal of that data was being sent out to scientists across the world in over a hundred computing centers located in over 40 countries.

As a result, Google stepped forward in August of last year to offer its Compute Engine services for overflow scientific computing periods. According to Panitkin, those spikes would occur before major conferences, overloading the existing computational framework. These overflow spikes represent an intriguing phenomenon, a macro-scale example of a problem that many mid-sized research institutions face on their own. Many of those institutions house their own HPC cluster that handles the majority of their heavy duty computational leg-work. When those resources are exhausted at peak times, they turn to the cloud.

When that problem manifests itself at key times across a research project that spans hundreds of facilities across the globe, that becomes a massive, worldwide HPC cloud computing challenge.

As such, the ATLAS project was invited by Google to test the Google Compute Engine in an effort to complete that challenge.

The experience has gone well so far, according to Panitkin. “All in all, we had a great experience with Google Computing. We tested several computational scenarios on that platform…we think that Google Compute Engine is a modern cloud infrastructure that can serve as a stable, high performance platform for scientific computing.”

The ATLAS collector, diagrammed below, was designed to intake and record 800 million proton-proton interactions per second. Of those 800 million collisions per second, only about 0.0002 Higgs signatures are detected per second. That translates to one signature for every 83 minutes or so. The computing systems have to sift through that huge dataset containing information from each of those almost billion interactions a second to find that one distinct pattern.

Thankfully, much of the ATLAS data is instantly filtered and discarded by an automatic trigger system. Were this not the case, the collector would generate a slightly unsustainable petabyte of data per second.

Adding to the challenge that the enormous amount of data presents is the very particular signature the ATLAS project was looking for. According to Panitkin, sifting through that much is akin to trying to find just one person in a system of a thousand planets of the same population as Earth. To help visualize what that looks like, the above picture represents all the possible signatures while the diagram below shows the one specific indicator of the Higgs Boson.

CERN collects the data and initially distributes it to its 11 tier-one centers, as shown in the diagram below. The cloud and specifically the Google Compute Engine enter the picture in tier two, where about two hundred centers across the globe simulate their respective sections based on the tier-naught CERN data.

Combining all of those resources into a shared system is essential for scientific researchers, as they cull information from other tests and simulations run. According to Andrew Hanushevsky, who presented alongside Panitkin at the Google I/O event, the system was aggregated using the XRootD system. XRootD, coupled with cmsd, was instrumental and combining and managing the thousand-core PROOF cluster made for ATLAS as well as the 4000-core HTCondor cluster for CERN’s collision analysis.

The important aspect was ensuring the system acted as one, as Hanushevsky explained. “This is a B tree, we can split it up anyway we want and this is great for doing cloud deployment. Part of that tree can be inside the GCE, another part can be in a private cloud, another part in a private cluster, and we can piece that all together to make it look like one big cluster.”

With that in place, the researchers could share information across the network at an impressive transfer rate of 57 Mbps transfer rate to the Google Compute Engine.

Finally, according to Panitkin, the computations done over GCE were impressively accurate. The system reported, according to Panitkin, “no failures due to Google Compute Engine.”

The best science requires extensive collaboration. Global projects such as the one that found the Higgs Boson mark the pinnacle of that collaboration, and these efforts can only grow stronger with the betterment of large-scale cloud-based computing services like Google Compute Engine.

Related Articles

Avoiding Scientific Computing Bottlenecks in the Cloud

On the Verge of Cloud 2.0

Running Computational Fluid Dynamics in the Cloud

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Leading Solution Providers

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This