NSF Forges Further Beyond FLOPs

By Nicole Hemsoth

May 22, 2013

The NSF recently sent out a high performance system solicitation to broaden their range of capabilities and provide a more “inclusive computing environment” for science and engineering, which while closed to new submissions, has opened the door to a few questions.

According to the agency, some of the new problem areas they want to address involve applications “that are extremely data intensive and may not be dominated by floating point operation speed.  While a number of the earlier acquisitions have addressed a subset of these issues, the current solicitation emphasizes this even further.”

With NSF-funded systems like Blue Waters and Stampede up and running, the agency says that there are other needs the scientific community has expressed, particularly as they relate to solving data-intensive challenges. Although this is not to say that they’ve turned a blind eye to hyper-performance systems, the solicitation makes little mention of what similar solicitations yielded when they decided on systems like Stampede, for instance,

In other words, we gave your FLOPs already, folks. It’s time for something new.

Among the elements that the NSF has deemed worthy of funding are:

  • Complement existing XD capabilities with new types of computational resources attuned to less traditional computational science communities;
  • Incorporate innovative and reliable services within the HPC environment to deal with complex and dynamic workflows that contribute significantly to the advancement of science and are difficult to achieve within XD;
  • Facilitate transition from local to national environments via the use of virtual machines;
  • Introduce highly useable and cost efficient cloud computing capabilities into XD to meet national scale requirements for new modes of computationally intensive scientific research; 
  • Expand the range of data intensive and/or computationally-challenging science and engineering applications that can be tackled with current XD resources;
  • Provide reliable approaches to scientific communities needing a high-throughput capability:
  • Provide a useful interactive environment for users needing to develop and debug codes using hundreds of cores or for scientific workflows/gateways requiring highly responsive computation;
  • Deal effectively with scientific applications needing a few hundred to a few thousand cores;
  • Efficiently provide a high degree of stability and usability by January, 2015

To better understand how these “big data” driven needs intersect with other large-scale computing initiatives, including exascale ambitions, we talked with Barry Schneider and Irene Qualters, both program directors in the division of advanced cyberinfrastructure in the computer and information scinces directorate.

The two dealt directly with the acquisitions of Blue Waters, Stampede, Kraken, Gordon, Blacklight, and other research systems. They also work within the XSEDE program to ensure that researchers have access to required computational resources. Qualters says that the NSF has focused on large-scale, high performance systems in the form of Blue Waters and Stampede, “and those are highly usable and fit what people need computationally.” Still, she says, the NSF is not just trying to expand the number of services—they’re trying to broaden the scope of them.

Qualters and Schneider agree that when it comes to pushing funding toward exascale systems or data-intensive challenges, there is not an either/or distinction since both areas feed different streams of research. However, the NSF has gathered details from user communities about what they require and the broadening array of new scientific instruments (everything from new telescopes to gene sequencers) has yielded a definite call to deal with ever-larger, more diverse, and complex data from across several fields.

 “We have been interested in data-intensive for quite some time and that focus is there but we’re also recognizing that new communities are having diff computational needs based on the types of research they’re involved with—this could data-intensive tools or just an expansion of visualization capability, for instance. We want to make sure that they have the cyberinfratructure to do so and do it at a national level,” said Qualters.

Schneider explained that it would send the wrong message to send if it came across that this solicitation was a purely data-intensive call since his team is looking for a balanced set of resources for XSEDE projects and researchers who have stretched the current capabilities of their university machines. However, he said that research groups need to have access to other resources, including everything from virtual machines to new hardware and software tools to allow them to make use of broadening data types and volumes.

“Not everyone needs 100,000 cores,” Schneider said. Most of the researchers they work with via XSEDE and the systems that form its backbone are simply looking for the most efficient way to get their science on the table. He noted that for now the focus is on these new hardware and software tools to support the new needs, but there is nothing preventing them from switching course in two years and funding another system to trump Blue Waters or Stampede. It’s all about what the community tells them is needed, he stressed.

To arrive at the priorities included in their goals for data, software, campus bridging, security and education within the larger computational and data-driven science and engineering, the NSF gathers input from their own internal experts and six task force committees dedicated to specific areas. Last February, the NSF released their vision for the next generation of advanced computing infrastructure for science and engineering, the goal of which was to ensure that research communities had access to the needed computational resources to move forward.

This set of principles guides their funding course for the current cycle and while exascale projects are nowhere in sight, there are some unique technologies that are finally getting a chance to shine. As for exascale in general, Qualters says that for the NSF, it’s not a matter of if, it’s a question of how and when. She emphasized the belief that there is a big difference between what her agency sees as exascale and what the benchmarks show are different—but reiterated that funding decisions won’t be an question of choosing exascale over “big data” science, it will be a decision based on what the research community needs at the time and what is practical for real-world applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This