NSF Forges Further Beyond FLOPs

By Nicole Hemsoth

May 22, 2013

The NSF recently sent out a high performance system solicitation to broaden their range of capabilities and provide a more “inclusive computing environment” for science and engineering, which while closed to new submissions, has opened the door to a few questions.

According to the agency, some of the new problem areas they want to address involve applications “that are extremely data intensive and may not be dominated by floating point operation speed.  While a number of the earlier acquisitions have addressed a subset of these issues, the current solicitation emphasizes this even further.”

With NSF-funded systems like Blue Waters and Stampede up and running, the agency says that there are other needs the scientific community has expressed, particularly as they relate to solving data-intensive challenges. Although this is not to say that they’ve turned a blind eye to hyper-performance systems, the solicitation makes little mention of what similar solicitations yielded when they decided on systems like Stampede, for instance,

In other words, we gave your FLOPs already, folks. It’s time for something new.

Among the elements that the NSF has deemed worthy of funding are:

  • Complement existing XD capabilities with new types of computational resources attuned to less traditional computational science communities;
  • Incorporate innovative and reliable services within the HPC environment to deal with complex and dynamic workflows that contribute significantly to the advancement of science and are difficult to achieve within XD;
  • Facilitate transition from local to national environments via the use of virtual machines;
  • Introduce highly useable and cost efficient cloud computing capabilities into XD to meet national scale requirements for new modes of computationally intensive scientific research; 
  • Expand the range of data intensive and/or computationally-challenging science and engineering applications that can be tackled with current XD resources;
  • Provide reliable approaches to scientific communities needing a high-throughput capability:
  • Provide a useful interactive environment for users needing to develop and debug codes using hundreds of cores or for scientific workflows/gateways requiring highly responsive computation;
  • Deal effectively with scientific applications needing a few hundred to a few thousand cores;
  • Efficiently provide a high degree of stability and usability by January, 2015

To better understand how these “big data” driven needs intersect with other large-scale computing initiatives, including exascale ambitions, we talked with Barry Schneider and Irene Qualters, both program directors in the division of advanced cyberinfrastructure in the computer and information scinces directorate.

The two dealt directly with the acquisitions of Blue Waters, Stampede, Kraken, Gordon, Blacklight, and other research systems. They also work within the XSEDE program to ensure that researchers have access to required computational resources. Qualters says that the NSF has focused on large-scale, high performance systems in the form of Blue Waters and Stampede, “and those are highly usable and fit what people need computationally.” Still, she says, the NSF is not just trying to expand the number of services—they’re trying to broaden the scope of them.

Qualters and Schneider agree that when it comes to pushing funding toward exascale systems or data-intensive challenges, there is not an either/or distinction since both areas feed different streams of research. However, the NSF has gathered details from user communities about what they require and the broadening array of new scientific instruments (everything from new telescopes to gene sequencers) has yielded a definite call to deal with ever-larger, more diverse, and complex data from across several fields.

 “We have been interested in data-intensive for quite some time and that focus is there but we’re also recognizing that new communities are having diff computational needs based on the types of research they’re involved with—this could data-intensive tools or just an expansion of visualization capability, for instance. We want to make sure that they have the cyberinfratructure to do so and do it at a national level,” said Qualters.

Schneider explained that it would send the wrong message to send if it came across that this solicitation was a purely data-intensive call since his team is looking for a balanced set of resources for XSEDE projects and researchers who have stretched the current capabilities of their university machines. However, he said that research groups need to have access to other resources, including everything from virtual machines to new hardware and software tools to allow them to make use of broadening data types and volumes.

“Not everyone needs 100,000 cores,” Schneider said. Most of the researchers they work with via XSEDE and the systems that form its backbone are simply looking for the most efficient way to get their science on the table. He noted that for now the focus is on these new hardware and software tools to support the new needs, but there is nothing preventing them from switching course in two years and funding another system to trump Blue Waters or Stampede. It’s all about what the community tells them is needed, he stressed.

To arrive at the priorities included in their goals for data, software, campus bridging, security and education within the larger computational and data-driven science and engineering, the NSF gathers input from their own internal experts and six task force committees dedicated to specific areas. Last February, the NSF released their vision for the next generation of advanced computing infrastructure for science and engineering, the goal of which was to ensure that research communities had access to the needed computational resources to move forward.

This set of principles guides their funding course for the current cycle and while exascale projects are nowhere in sight, there are some unique technologies that are finally getting a chance to shine. As for exascale in general, Qualters says that for the NSF, it’s not a matter of if, it’s a question of how and when. She emphasized the belief that there is a big difference between what her agency sees as exascale and what the benchmarks show are different—but reiterated that funding decisions won’t be an question of choosing exascale over “big data” science, it will be a decision based on what the research community needs at the time and what is practical for real-world applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This