NSF Forges Further Beyond FLOPs

By Nicole Hemsoth

May 22, 2013

The NSF recently sent out a high performance system solicitation to broaden their range of capabilities and provide a more “inclusive computing environment” for science and engineering, which while closed to new submissions, has opened the door to a few questions.

According to the agency, some of the new problem areas they want to address involve applications “that are extremely data intensive and may not be dominated by floating point operation speed.  While a number of the earlier acquisitions have addressed a subset of these issues, the current solicitation emphasizes this even further.”

With NSF-funded systems like Blue Waters and Stampede up and running, the agency says that there are other needs the scientific community has expressed, particularly as they relate to solving data-intensive challenges. Although this is not to say that they’ve turned a blind eye to hyper-performance systems, the solicitation makes little mention of what similar solicitations yielded when they decided on systems like Stampede, for instance,

In other words, we gave your FLOPs already, folks. It’s time for something new.

Among the elements that the NSF has deemed worthy of funding are:

  • Complement existing XD capabilities with new types of computational resources attuned to less traditional computational science communities;
  • Incorporate innovative and reliable services within the HPC environment to deal with complex and dynamic workflows that contribute significantly to the advancement of science and are difficult to achieve within XD;
  • Facilitate transition from local to national environments via the use of virtual machines;
  • Introduce highly useable and cost efficient cloud computing capabilities into XD to meet national scale requirements for new modes of computationally intensive scientific research; 
  • Expand the range of data intensive and/or computationally-challenging science and engineering applications that can be tackled with current XD resources;
  • Provide reliable approaches to scientific communities needing a high-throughput capability:
  • Provide a useful interactive environment for users needing to develop and debug codes using hundreds of cores or for scientific workflows/gateways requiring highly responsive computation;
  • Deal effectively with scientific applications needing a few hundred to a few thousand cores;
  • Efficiently provide a high degree of stability and usability by January, 2015

To better understand how these “big data” driven needs intersect with other large-scale computing initiatives, including exascale ambitions, we talked with Barry Schneider and Irene Qualters, both program directors in the division of advanced cyberinfrastructure in the computer and information scinces directorate.

The two dealt directly with the acquisitions of Blue Waters, Stampede, Kraken, Gordon, Blacklight, and other research systems. They also work within the XSEDE program to ensure that researchers have access to required computational resources. Qualters says that the NSF has focused on large-scale, high performance systems in the form of Blue Waters and Stampede, “and those are highly usable and fit what people need computationally.” Still, she says, the NSF is not just trying to expand the number of services—they’re trying to broaden the scope of them.

Qualters and Schneider agree that when it comes to pushing funding toward exascale systems or data-intensive challenges, there is not an either/or distinction since both areas feed different streams of research. However, the NSF has gathered details from user communities about what they require and the broadening array of new scientific instruments (everything from new telescopes to gene sequencers) has yielded a definite call to deal with ever-larger, more diverse, and complex data from across several fields.

 “We have been interested in data-intensive for quite some time and that focus is there but we’re also recognizing that new communities are having diff computational needs based on the types of research they’re involved with—this could data-intensive tools or just an expansion of visualization capability, for instance. We want to make sure that they have the cyberinfratructure to do so and do it at a national level,” said Qualters.

Schneider explained that it would send the wrong message to send if it came across that this solicitation was a purely data-intensive call since his team is looking for a balanced set of resources for XSEDE projects and researchers who have stretched the current capabilities of their university machines. However, he said that research groups need to have access to other resources, including everything from virtual machines to new hardware and software tools to allow them to make use of broadening data types and volumes.

“Not everyone needs 100,000 cores,” Schneider said. Most of the researchers they work with via XSEDE and the systems that form its backbone are simply looking for the most efficient way to get their science on the table. He noted that for now the focus is on these new hardware and software tools to support the new needs, but there is nothing preventing them from switching course in two years and funding another system to trump Blue Waters or Stampede. It’s all about what the community tells them is needed, he stressed.

To arrive at the priorities included in their goals for data, software, campus bridging, security and education within the larger computational and data-driven science and engineering, the NSF gathers input from their own internal experts and six task force committees dedicated to specific areas. Last February, the NSF released their vision for the next generation of advanced computing infrastructure for science and engineering, the goal of which was to ensure that research communities had access to the needed computational resources to move forward.

This set of principles guides their funding course for the current cycle and while exascale projects are nowhere in sight, there are some unique technologies that are finally getting a chance to shine. As for exascale in general, Qualters says that for the NSF, it’s not a matter of if, it’s a question of how and when. She emphasized the belief that there is a big difference between what her agency sees as exascale and what the benchmarks show are different—but reiterated that funding decisions won’t be an question of choosing exascale over “big data” science, it will be a decision based on what the research community needs at the time and what is practical for real-world applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here at HPCwire

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire