NSF Forges Further Beyond FLOPs

By Nicole Hemsoth

May 22, 2013

The NSF recently sent out a high performance system solicitation to broaden their range of capabilities and provide a more “inclusive computing environment” for science and engineering, which while closed to new submissions, has opened the door to a few questions.

According to the agency, some of the new problem areas they want to address involve applications “that are extremely data intensive and may not be dominated by floating point operation speed.  While a number of the earlier acquisitions have addressed a subset of these issues, the current solicitation emphasizes this even further.”

With NSF-funded systems like Blue Waters and Stampede up and running, the agency says that there are other needs the scientific community has expressed, particularly as they relate to solving data-intensive challenges. Although this is not to say that they’ve turned a blind eye to hyper-performance systems, the solicitation makes little mention of what similar solicitations yielded when they decided on systems like Stampede, for instance,

In other words, we gave your FLOPs already, folks. It’s time for something new.

Among the elements that the NSF has deemed worthy of funding are:

  • Complement existing XD capabilities with new types of computational resources attuned to less traditional computational science communities;
  • Incorporate innovative and reliable services within the HPC environment to deal with complex and dynamic workflows that contribute significantly to the advancement of science and are difficult to achieve within XD;
  • Facilitate transition from local to national environments via the use of virtual machines;
  • Introduce highly useable and cost efficient cloud computing capabilities into XD to meet national scale requirements for new modes of computationally intensive scientific research; 
  • Expand the range of data intensive and/or computationally-challenging science and engineering applications that can be tackled with current XD resources;
  • Provide reliable approaches to scientific communities needing a high-throughput capability:
  • Provide a useful interactive environment for users needing to develop and debug codes using hundreds of cores or for scientific workflows/gateways requiring highly responsive computation;
  • Deal effectively with scientific applications needing a few hundred to a few thousand cores;
  • Efficiently provide a high degree of stability and usability by January, 2015

To better understand how these “big data” driven needs intersect with other large-scale computing initiatives, including exascale ambitions, we talked with Barry Schneider and Irene Qualters, both program directors in the division of advanced cyberinfrastructure in the computer and information scinces directorate.

The two dealt directly with the acquisitions of Blue Waters, Stampede, Kraken, Gordon, Blacklight, and other research systems. They also work within the XSEDE program to ensure that researchers have access to required computational resources. Qualters says that the NSF has focused on large-scale, high performance systems in the form of Blue Waters and Stampede, “and those are highly usable and fit what people need computationally.” Still, she says, the NSF is not just trying to expand the number of services—they’re trying to broaden the scope of them.

Qualters and Schneider agree that when it comes to pushing funding toward exascale systems or data-intensive challenges, there is not an either/or distinction since both areas feed different streams of research. However, the NSF has gathered details from user communities about what they require and the broadening array of new scientific instruments (everything from new telescopes to gene sequencers) has yielded a definite call to deal with ever-larger, more diverse, and complex data from across several fields.

 “We have been interested in data-intensive for quite some time and that focus is there but we’re also recognizing that new communities are having diff computational needs based on the types of research they’re involved with—this could data-intensive tools or just an expansion of visualization capability, for instance. We want to make sure that they have the cyberinfratructure to do so and do it at a national level,” said Qualters.

Schneider explained that it would send the wrong message to send if it came across that this solicitation was a purely data-intensive call since his team is looking for a balanced set of resources for XSEDE projects and researchers who have stretched the current capabilities of their university machines. However, he said that research groups need to have access to other resources, including everything from virtual machines to new hardware and software tools to allow them to make use of broadening data types and volumes.

“Not everyone needs 100,000 cores,” Schneider said. Most of the researchers they work with via XSEDE and the systems that form its backbone are simply looking for the most efficient way to get their science on the table. He noted that for now the focus is on these new hardware and software tools to support the new needs, but there is nothing preventing them from switching course in two years and funding another system to trump Blue Waters or Stampede. It’s all about what the community tells them is needed, he stressed.

To arrive at the priorities included in their goals for data, software, campus bridging, security and education within the larger computational and data-driven science and engineering, the NSF gathers input from their own internal experts and six task force committees dedicated to specific areas. Last February, the NSF released their vision for the next generation of advanced computing infrastructure for science and engineering, the goal of which was to ensure that research communities had access to the needed computational resources to move forward.

This set of principles guides their funding course for the current cycle and while exascale projects are nowhere in sight, there are some unique technologies that are finally getting a chance to shine. As for exascale in general, Qualters says that for the NSF, it’s not a matter of if, it’s a question of how and when. She emphasized the belief that there is a big difference between what her agency sees as exascale and what the benchmarks show are different—but reiterated that funding decisions won’t be an question of choosing exascale over “big data” science, it will be a decision based on what the research community needs at the time and what is practical for real-world applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This