Exascale Advocates Stand on Nuclear Stockpiles

By Nicole Hemsoth

May 23, 2013

When it comes to investment in scientific research, the U.S. government tends to have an open ear for new ideas. However, in this time of tight budgets and heightened national security, federal coffers tend to have looser locks when there is a threat situation—whether that is global competitiveness or the safety and security of the nation.

According to a group of leading voices in high performance computing who gathered before yesterday’s U.S. Subcommittee on Energy, all of these national commodities are at stake without sustained investment in exascale systems.

While exascale funding hearings are nothing new, yesterday’s appeal struck a different chord, harmonizing with the urgency of ensuring U.S. nuclear capabilities—a note that has been resonating in headlines lately.

Instead of pitching the “big science” projects that lack a direct call to action, the threat of enroaching dominance from China and others, internal security, continued economic viability, and even the ability to predict tornado paths (a top news item during yesterday’s hearings following a devastating F5 in Oklahoma) took center stage, pushing exascale into the light of a requirement versus another expensive scientific endeavor.

Dr. Roscoe Giles, Chairman of the Advanced Scientific Computing Advisory Committee; Dr. Rick Stevens, Associate Director for Computing, Environment and Life Sciences at Argonne; Dona Crawford, Associate Director for Computation at Lawrence Livermore; and Dr. Dan Reed, VP of Research and Economic Development at the University of Iowa, all weighed in on various, expected components of exascale’s future (architecture, power/cooling, memory, etc.) before ringing the urgency alarm.

The hearing’s purpose was to examine draft legislation as it relates to the Department of Energy’s goals to build an exascale system. While the scientific payload of exascale was an important topic, the real meat, particularly when the floor was opened for questions, was how exascale will fit into larger national security goals, including nuclear stockpile stewardship—a rather familiar subject in the context of historical HPC funding.

The government has a $465.59 million proposal for FY 2014 in their hands to fund the DOE’s Office of Science Advanced Scientific Computing Research program, which will help spearhead U.S exascale efforts. Additionally, the National Nuclear Security Administration (NNSA) is requesting a tick over $400 million for its Advanced Simulation and Computing programs, which will help the U.S. maintain the safety and viability of its nuclear weapons stockpile without active underground or small on-ground tests.

If the Advanced Simulation and Computing Program rings a bell, it’s because it was an original part of the initial DOE Stockpile Stewardship and Management plan, which took the dirt and grit out of the physical testing process of nukes and plugged the possibilities into supercomputers and new instruments instead. Since even the youngest nuclear devices in the U.S. shed are 20 years old, a lot of testing needs to be done to see how they will react under the stresses of aging in terms of stability and viability should the unfortunate need arise.

From the beginning, this Stewardship and associated Simulation and Computing program pulled in funding—breathing new life into research endeavors at a number of national labs, most notably Sandia, Lawrence Livermore and Los Alamos. It also kicked funds into the private technology sector by default. To avoid a tangent, take this redirect to an analysis of some of the program’s strengths and weaknesses in terms of the computational horsepower.

Using the arsenal of current tools, the NNSA continuously assesses each nuclear weapon to certify its reliability and to detect or anticipate any potential problems that may come about as a result of aging.  All weapon types in the U.S. nuclear stockpile require routine maintenance, periodic repair, replacement of limited life components, surveillance (a thorough examination of a weapon)—all tasks that Crawford and colleagues say require exaflop-capable resources.

In short, this convincing approach worked in the 1990s when modeling and simulation capabilities were increasing rapidly—but the question is whether or not even that call to action for exascale’s value will be enough to add the required $400 million-level of urgency. Combined, however, with the dramatic and timely issues of nuclear threats pointed at allies—not to mention our competitive stew has cooled on multiple industrial and economic fronts—this appeal might carry more weight than it would have even this time last year.

As Dona Crawford explained, it is now the use of exascale systems that represents the only way to truly understand how to make sure the U.S. nuclear stockpile is safe, secure and in top condition. The same argument that propelled a great deal of investment into tech companies back in the 1990s when the NNSA looked to simulations and supercomputing to carry the stewardship load.

“Computing is the integrating element of maintaining the safety, security and reliability of our nuclear weapons stockpile without returning to underground tests,” said Crawford. “By integrating element, I mean that right now we have old test data, above-ground small test data, a lot of theory and some new models,” but that these cannot be used effectively unless scientists have access to far higher-fidelity simulations.

Even without using exascale to ensure nuclear stockpile safety and security, the side effect of lagging investment is a dwindling of our competitive prowess.

When asked why the U.S. doesn’t look to more international collaboration to reach its exascale ambitions, Dr. Stevens said that this makes sense on the software level, especially since so many large-scale systems use the same open source packages that are then pushed out to the community. However, he argued that it would not be suitable for us to share resources on the hardware front, pointing to what might happen if we were to trust our secure operations to run on hardware built in China.

The competitive threat wasn’t difficult for the speakers to tease apart for the committee—they pointed to investments in China and Japan toward exascale, making it clear that these were not insignificant funding efforts.  

Dan Reed made the argument that we are facing an uncertain future in HPC as other nations are making critical investments in supercomputing, noting, “Global leadership isn’t a birthright.” Even if the nuclear stockpile can make do with its current level of petascale capabilities, winning a silver, bronze—or even no medal in the exascale race itself presents a bevy of potential problems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This