Exascale Advocates Stand on Nuclear Stockpiles

By Nicole Hemsoth

May 23, 2013

When it comes to investment in scientific research, the U.S. government tends to have an open ear for new ideas. However, in this time of tight budgets and heightened national security, federal coffers tend to have looser locks when there is a threat situation—whether that is global competitiveness or the safety and security of the nation.

According to a group of leading voices in high performance computing who gathered before yesterday’s U.S. Subcommittee on Energy, all of these national commodities are at stake without sustained investment in exascale systems.

While exascale funding hearings are nothing new, yesterday’s appeal struck a different chord, harmonizing with the urgency of ensuring U.S. nuclear capabilities—a note that has been resonating in headlines lately.

Instead of pitching the “big science” projects that lack a direct call to action, the threat of enroaching dominance from China and others, internal security, continued economic viability, and even the ability to predict tornado paths (a top news item during yesterday’s hearings following a devastating F5 in Oklahoma) took center stage, pushing exascale into the light of a requirement versus another expensive scientific endeavor.

Dr. Roscoe Giles, Chairman of the Advanced Scientific Computing Advisory Committee; Dr. Rick Stevens, Associate Director for Computing, Environment and Life Sciences at Argonne; Dona Crawford, Associate Director for Computation at Lawrence Livermore; and Dr. Dan Reed, VP of Research and Economic Development at the University of Iowa, all weighed in on various, expected components of exascale’s future (architecture, power/cooling, memory, etc.) before ringing the urgency alarm.

The hearing’s purpose was to examine draft legislation as it relates to the Department of Energy’s goals to build an exascale system. While the scientific payload of exascale was an important topic, the real meat, particularly when the floor was opened for questions, was how exascale will fit into larger national security goals, including nuclear stockpile stewardship—a rather familiar subject in the context of historical HPC funding.

The government has a $465.59 million proposal for FY 2014 in their hands to fund the DOE’s Office of Science Advanced Scientific Computing Research program, which will help spearhead U.S exascale efforts. Additionally, the National Nuclear Security Administration (NNSA) is requesting a tick over $400 million for its Advanced Simulation and Computing programs, which will help the U.S. maintain the safety and viability of its nuclear weapons stockpile without active underground or small on-ground tests.

If the Advanced Simulation and Computing Program rings a bell, it’s because it was an original part of the initial DOE Stockpile Stewardship and Management plan, which took the dirt and grit out of the physical testing process of nukes and plugged the possibilities into supercomputers and new instruments instead. Since even the youngest nuclear devices in the U.S. shed are 20 years old, a lot of testing needs to be done to see how they will react under the stresses of aging in terms of stability and viability should the unfortunate need arise.

From the beginning, this Stewardship and associated Simulation and Computing program pulled in funding—breathing new life into research endeavors at a number of national labs, most notably Sandia, Lawrence Livermore and Los Alamos. It also kicked funds into the private technology sector by default. To avoid a tangent, take this redirect to an analysis of some of the program’s strengths and weaknesses in terms of the computational horsepower.

Using the arsenal of current tools, the NNSA continuously assesses each nuclear weapon to certify its reliability and to detect or anticipate any potential problems that may come about as a result of aging.  All weapon types in the U.S. nuclear stockpile require routine maintenance, periodic repair, replacement of limited life components, surveillance (a thorough examination of a weapon)—all tasks that Crawford and colleagues say require exaflop-capable resources.

In short, this convincing approach worked in the 1990s when modeling and simulation capabilities were increasing rapidly—but the question is whether or not even that call to action for exascale’s value will be enough to add the required $400 million-level of urgency. Combined, however, with the dramatic and timely issues of nuclear threats pointed at allies—not to mention our competitive stew has cooled on multiple industrial and economic fronts—this appeal might carry more weight than it would have even this time last year.

As Dona Crawford explained, it is now the use of exascale systems that represents the only way to truly understand how to make sure the U.S. nuclear stockpile is safe, secure and in top condition. The same argument that propelled a great deal of investment into tech companies back in the 1990s when the NNSA looked to simulations and supercomputing to carry the stewardship load.

“Computing is the integrating element of maintaining the safety, security and reliability of our nuclear weapons stockpile without returning to underground tests,” said Crawford. “By integrating element, I mean that right now we have old test data, above-ground small test data, a lot of theory and some new models,” but that these cannot be used effectively unless scientists have access to far higher-fidelity simulations.

Even without using exascale to ensure nuclear stockpile safety and security, the side effect of lagging investment is a dwindling of our competitive prowess.

When asked why the U.S. doesn’t look to more international collaboration to reach its exascale ambitions, Dr. Stevens said that this makes sense on the software level, especially since so many large-scale systems use the same open source packages that are then pushed out to the community. However, he argued that it would not be suitable for us to share resources on the hardware front, pointing to what might happen if we were to trust our secure operations to run on hardware built in China.

The competitive threat wasn’t difficult for the speakers to tease apart for the committee—they pointed to investments in China and Japan toward exascale, making it clear that these were not insignificant funding efforts.  

Dan Reed made the argument that we are facing an uncertain future in HPC as other nations are making critical investments in supercomputing, noting, “Global leadership isn’t a birthright.” Even if the nuclear stockpile can make do with its current level of petascale capabilities, winning a silver, bronze—or even no medal in the exascale race itself presents a bevy of potential problems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire