The Science Cloud Cometh

By Robert Jenkins

May 28, 2013

Mankind is currently engaged in some of the most important scientific research of our age: the discovery of the elusive Higgs particle to validate our modern understanding of physics; genomic sequencing to enrich our understanding of life on Earth and to fight diseases like cancer; and the global monitoring of the earth from space used to analyze and one day predict everything from  earthquakes to volcanic eruptions, to climate change or next year’s crop yields.

These monumental scientific undertakings have very different goals, but one important feature in common: the huge amounts of data that must be processed efficiently in order to yield accurate results. Unfortunately, the advanced computer infrastructure required to handle these big data needs are also exploding in size leading international scientific institutions such as CERN, the European Molecular Biology Laboratory (EMBL) and the European Space Agency (ESA) to look at additional sources of capacity to complement their existing in-house deployments. Without access to the right resources, researchers within these organizations can become limited by computing capacity in delivering and analyzing results.

The answer to this dilemma may lie in one of today’s most innovative computing delivery technologies: cloud computing. By taking advantage of powerful cloud computing platforms, these international scientific institutions can continue to add scale to their compute environments in a competitive and convenient way. With this dynamic in mind, a consortium of European cloud computing companies and international scientific institutions recently launched Helix Nebula, the ‘Science Cloud,’ with the dual purpose of fostering a healthier economic climate for the cloud, while giving the scientific sector access to innovative technology to promote research and scientific progress.

The key aim is to provide a multi-cloud solution that allows scientific institutions to deploy workloads seamlessly across different providers and locations. This involves harmonizing provisioning, networking, software environments and more.  In this way, such a cloud environment is able to offer a fully-scalable and customizable infrastructure that can support the varying nature of scientific research computing requirements and the high volumes of data. To put things into perspective, at CERN alone, 25 petabytes of new data are stored per year and 250,000 CPUs are in use around the world to process LHC data. The efficiency of biomedical labs sequencing DNA has outstripped Moore’s Law significantly in recent years. This has created a bottleneck with the downstream bioinformatics pipelines that rely on high performance computing infrastructures. These requirements are increasing rapidly over time.

To satisfy these high-performance computing (HPC) environments, there are several factors that need to come together to create a successful solution:

Appropriate Infrastructure

Many clouds have adopted traditional web hosting methodologies that rely on low utilization from customers and over-provisioning. Large customers – like those participating in the Helix Nebula initiative – with heavy, data-intensive workloads and HPC needs break that model. Advanced infrastructure is a required fit for that purpose. High-speed networking, between both end user sites and clouds as well as cloud to cloud, is essential. Advanced storage strategies and intelligent multi-cloud procurement and provisioning are needed to provide expanded scalability. These are to name just a few key areas of work within the Helix Nebula consortium.

Open Software and Networking Layers

Having a flexible software layer that is able to run existing systems easily is a crucial component. With an open software layer, HPC users can easily port their data and applications to the cloud with little modification – for example, CERN used the CERN VM image for workloads conducted thus far within Helix Nebula. In more restrictive cloud deployments this would not work natively. HPC users have very specific use cases and large existing installed bases, so they need the cloud to work with and not against their existing applications and knowledge.


Being able to tune cloud infrastructure to fit directly with each use case is critical. HPC users care primarily about price/performance, which is delivered through a combination of efficient resource purchasing and good performance levels. The ability to tightly fit the application layer through the virtualization layer to the actual hardware can be very important in achieving these parameters. The ability to tailor cloud infrastructure to fit the use cases closely is therefore highly desirable. In big data, for example, many applications require a great deal of RAM in comparison to CPU. The fixed server model of many dominant public cloud providers can cause significant over-provisioning of resources and destroy the economics of using such public cloud providers. Part of the Helix Nebula consortium’s efforts therefore covers ensuring participating suppliers of cloud resources are able to reflect the requirements of the scientific institutions.

True Scalability

HPC needs are often temporal – at least at a project level. For instance, CERN runs its accelerator chain in long campaigns followed by maintenance windows which change their compute consumption requirements over time. Each individual DNA sequencing and assembly run lasts for a set period. A purchasing model that can match these usage profiles as closely as possible can improve utilization and therefore cost effectiveness for research institutions. A seamless model that can accommodate the purchasing of capacity in a reserved fashion but also absorb on demand needs is very important for HPC users. Delivering this behavior using multiple cloud providers offers a greater degree of scalability and is a key aim of the Helix Nebula consortium.

There is a lot of discussion around the benefits of public and private cloud environments when it comes to business and consumer services, but a flexible cloud infrastructure without deployment restrictions suits big data and HPC needs in the scientific research sector. Such flexible cloud platforms can carry the weight of projects like those from Helix Nebula members because their approach to cloud computing emphasizes performance and flexibility, without overburdening infrastructure or overprovisioning resources, and combines that with a multi-supplier deployment model. By tapping into cutting-edge developments from the leading cloud infrastructure providers, organizations like CERN, ESA and EMBL can continue to better the world through research, without the potential future roadblocks of limited computing infrastructure resources. 

About the Author

Robert Jenkins is the co-founder and CEO of CloudSigma and is responsible for leading the technological innovation of the company’s pure-cloud IaaS offering. Under Robert’s direction, CloudSigma has established an open, customer-centric approach to the public cloud. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This