Full Details Uncovered on Chinese Top Supercomputer

By Nicole Hemsoth

June 2, 2013

At the end of May, an international group of high performance computing researchers gathered at the International HPC Forum in Changsha, China. One of the talks detailed the specs for the new Tianhe-2 system, which as we reported last week, is expected to rather dramatically top the Top500 list of the world’s fastest supercomputers.

China, supercomputer, Tianhe-2, Tianhe, Tianhe2
Artist’s rendering of the system as it will look once finally implemented at its final destination.

As noted previously, the system will be housed at the National Supercomputer Center in Guangzhou and has been aimed at providing an open platform for research and education and to provide a high performance computing service for southern China.

Dr. Jack Dongarra from the University of Tennessee and Oak Ridge National Lab, one of the founders of the Top500, was on hand for the event in China and shared a draft document that offers deep detail on the full scope of the Tianhe-2, which will, barring any completely unexpected surprises, far surpass the Cray-built Titan.

The 16,000-node Inspur-built Tianhe-2 is based on Ivy Bridge (32,000 sockets) and 48,000 Xeon Phi boards, meaning a total of 3,120,000 cores. Each of the nodes sports 2 Ivy Bridge sockets and 3 Phi boards.

According to Dongarra, there are some new and notable LINPACK results:

I was sent results showing a run of HPL benchmark using 14,336 nodes, that run was made using 50 GB of the memory of each node and achieved 30.65 petaflops out of a theoretical peak of 49.19 petaflops, or an efficiency of 62.3% of theoretical peak performance taking a little over 5 hours to complete.The fastest result shown was using 90% of the machine. They are expecting to make improvements and increase the number of nodes used in the test.

This certainly seems to confirm that this will indeed be the top system on this June’s list. But let’s take a closer look at some architectural elements to put those numbers in context…

Interestingly, each of the Phi boards have 57 cores instead of 61. This is because they were early in the production cycle at the time and yield was an issue. Still each of the 57 cores can boast 4 threads of execution and each thread can hit 4 flops per cycle. By Dongarra’s estimate, the 1.1 GHz cycle time produces a theoretical peak of 1.003 teraflops for each Phi element.

Each of the nodes is laden with 64 GB of memory, each of the Phi elements come with 8 GB of memory for a total of 88 GB of memory per node for a total of full system memory at 1.404 petabytes. There is not a lot of detail about the storage infrastructure, but there is a global shared parallel storage system sporting 12.4 petabytes.

According to Dongarra, there are “2 nodes per board, 16 boards per frame, 4 frames per rack, and 125 racks make up the system.” He says that the compute board has two compute nodes and is composed of two halves—the CPM and APM. The CPM portion of the board contains the 4 Ivy Bridge processors, memory and 1 Xeon Phi board while the CPM half contains the 5 Xeon Phi boards.

compute, node, xeon, tianhe-2, tianhe2, china, supercomputer

There are also 5 horizontal blind push-pull connections on the edge; connections from the Ivy Bridges to each of the coprocessors are made via PCI-E 2, which has 16 lanes and are 10 Gbps each. Dongarra points out that the actual design and implementation of the board is for PCI-E 3.0 but the Phi only supports PCI0E 2. There is also a PCI-E connection to the NIC.

We already knew that this was a system from the Chinese IT company, Inspur. According to Dongarra, “Inspur contributed to the manufacturing of the printed circuit boards and is also contributing to the system installation and testing.” At this point, the system is still being assembled and tested at the National University of Defense Technology before being installed at its permanent home.

As we know from the original Tianhe-1A system, NUDT has been hard at work on their own interconnects. On the TH-2, they are using their TH Express-2 interconnect network, which taps a fat tree topology with 13 switches, each with 576 ports at the top level.

As Dongarra notes, “This is an optoelectronics hybrid transport technology and runs a proprietary network. The interconnect uses their own chip set. The high radix router ASIC called NRC has a 90 nm feature size with a 17.16×17.16 mm die and 2577 pins.”

He says that “the throughput of a single NRC is 2.56 Tbps. The network interface ASIC called NIC has the same feature size and package as the NIC, the die size is 10.76×10.76 mm, 675 pins and uses PCI-E G2 16X. A broadcast operation via MPI was running at 6.36 GB/s and the latency measured with 64K of data within 12,000 nodes is about 85us.

Dongarra says that the 720 square meter footprint means a rather confined space and isn’t optimally laid out. However, this is just temporary since when it arrives in its permanent home in Guangzhou it will be laid out more efficiently, as seen in the artist’s rendering of the system at the top of the article.

The peak power consumption under load for the system is 17.6 MWs, but this is just for the processors, memory and interconnect network. When the closely-coupled chilled water with customized liquid water cooling unit operations are added in, the total consumption is 24 MWs. Dongarra says that it has a high cooling capacity of 80 KW and when installed at its home site, it will use city water as its source. Power load is monitored by a series of lights on the cabinet doors.

For far more details about these and other aspects of the Tianhe-2 system, check out Dr. Dongarra’s extensive report…

http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This