Full Details Uncovered on Chinese Top Supercomputer

By Nicole Hemsoth

June 2, 2013

At the end of May, an international group of high performance computing researchers gathered at the International HPC Forum in Changsha, China. One of the talks detailed the specs for the new Tianhe-2 system, which as we reported last week, is expected to rather dramatically top the Top500 list of the world’s fastest supercomputers.

China, supercomputer, Tianhe-2, Tianhe, Tianhe2
Artist’s rendering of the system as it will look once finally implemented at its final destination.

As noted previously, the system will be housed at the National Supercomputer Center in Guangzhou and has been aimed at providing an open platform for research and education and to provide a high performance computing service for southern China.

Dr. Jack Dongarra from the University of Tennessee and Oak Ridge National Lab, one of the founders of the Top500, was on hand for the event in China and shared a draft document that offers deep detail on the full scope of the Tianhe-2, which will, barring any completely unexpected surprises, far surpass the Cray-built Titan.

The 16,000-node Inspur-built Tianhe-2 is based on Ivy Bridge (32,000 sockets) and 48,000 Xeon Phi boards, meaning a total of 3,120,000 cores. Each of the nodes sports 2 Ivy Bridge sockets and 3 Phi boards.

According to Dongarra, there are some new and notable LINPACK results:

I was sent results showing a run of HPL benchmark using 14,336 nodes, that run was made using 50 GB of the memory of each node and achieved 30.65 petaflops out of a theoretical peak of 49.19 petaflops, or an efficiency of 62.3% of theoretical peak performance taking a little over 5 hours to complete.The fastest result shown was using 90% of the machine. They are expecting to make improvements and increase the number of nodes used in the test.

This certainly seems to confirm that this will indeed be the top system on this June’s list. But let’s take a closer look at some architectural elements to put those numbers in context…

Interestingly, each of the Phi boards have 57 cores instead of 61. This is because they were early in the production cycle at the time and yield was an issue. Still each of the 57 cores can boast 4 threads of execution and each thread can hit 4 flops per cycle. By Dongarra’s estimate, the 1.1 GHz cycle time produces a theoretical peak of 1.003 teraflops for each Phi element.

Each of the nodes is laden with 64 GB of memory, each of the Phi elements come with 8 GB of memory for a total of 88 GB of memory per node for a total of full system memory at 1.404 petabytes. There is not a lot of detail about the storage infrastructure, but there is a global shared parallel storage system sporting 12.4 petabytes.

According to Dongarra, there are “2 nodes per board, 16 boards per frame, 4 frames per rack, and 125 racks make up the system.” He says that the compute board has two compute nodes and is composed of two halves—the CPM and APM. The CPM portion of the board contains the 4 Ivy Bridge processors, memory and 1 Xeon Phi board while the CPM half contains the 5 Xeon Phi boards.

compute, node, xeon, tianhe-2, tianhe2, china, supercomputer

There are also 5 horizontal blind push-pull connections on the edge; connections from the Ivy Bridges to each of the coprocessors are made via PCI-E 2, which has 16 lanes and are 10 Gbps each. Dongarra points out that the actual design and implementation of the board is for PCI-E 3.0 but the Phi only supports PCI0E 2. There is also a PCI-E connection to the NIC.

We already knew that this was a system from the Chinese IT company, Inspur. According to Dongarra, “Inspur contributed to the manufacturing of the printed circuit boards and is also contributing to the system installation and testing.” At this point, the system is still being assembled and tested at the National University of Defense Technology before being installed at its permanent home.

As we know from the original Tianhe-1A system, NUDT has been hard at work on their own interconnects. On the TH-2, they are using their TH Express-2 interconnect network, which taps a fat tree topology with 13 switches, each with 576 ports at the top level.

As Dongarra notes, “This is an optoelectronics hybrid transport technology and runs a proprietary network. The interconnect uses their own chip set. The high radix router ASIC called NRC has a 90 nm feature size with a 17.16×17.16 mm die and 2577 pins.”

He says that “the throughput of a single NRC is 2.56 Tbps. The network interface ASIC called NIC has the same feature size and package as the NIC, the die size is 10.76×10.76 mm, 675 pins and uses PCI-E G2 16X. A broadcast operation via MPI was running at 6.36 GB/s and the latency measured with 64K of data within 12,000 nodes is about 85us.

Dongarra says that the 720 square meter footprint means a rather confined space and isn’t optimally laid out. However, this is just temporary since when it arrives in its permanent home in Guangzhou it will be laid out more efficiently, as seen in the artist’s rendering of the system at the top of the article.

The peak power consumption under load for the system is 17.6 MWs, but this is just for the processors, memory and interconnect network. When the closely-coupled chilled water with customized liquid water cooling unit operations are added in, the total consumption is 24 MWs. Dongarra says that it has a high cooling capacity of 80 KW and when installed at its home site, it will use city water as its source. Power load is monitored by a series of lights on the cabinet doors.

For far more details about these and other aspects of the Tianhe-2 system, check out Dr. Dongarra’s extensive report…

http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run their HPC and AI applications alongside their other cloud w Read more…

By Tiffany Trader

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run Read more…

By Tiffany Trader

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This