Floating Genomics to the Cloud with AWS

By Ian Armas Foster

June 5, 2013

As more institutions implement cloud strategies to supplement their best HPC practices, it is important to consider the extent to which companies run HPC applications in the cloud and for which applications it is particularly useful.

David Pellerin and Jafar Shameen, both of HPC Business Development at Amazon Web Services, gave a presentation at AWS Summit 2013 to discuss which industries and companies are using the cloud service to run HPC applications. Not surprisingly, the talk mostly centered on applications in genomics and the life sciences, as highlighted by a third speaker in Alex Dickinson, SVP of Cloud Genomics at Illumina.

“What you end up doing is building a cluster for the worst, nastiest problem you have,” said Pellerin on the risks and costs of building in-house HPC clusters. “You get this big, expensive cluster that for most of the workload, it doesn’t need to be there.” No company should know this better than Amazon, as they started being a cloud services provider as a result of having an excess of computing resources that were only put to use at certain peak times.

Scientific disciplines such as genomics and high energy particle physics turn to cloud computing for certain HPC applications for a fairly basic reason: cloud computing is optimal for experimentation. For Pellerin, computing on AWS allows ‘the ability to fail fast.’ An in-house system is subject to job queue and scheduling limitations that generally prove both costly and time-consuming.

Again, ‘the ability to fail fast’ is an important one for a researcher looking to initially test several hypotheses he or she may have given their large dataset. This capability doesn’t exclusively help those in the sciences, as financial services are running risk analytics on AWS while engineering firms run CAD and CAE simulations for aerospace, according to Pellerin. However, those terms of ‘risk analytics’ and ‘CAD simulations’ imply a theoretical, experimental approach to computing, where the value of running multiple scenarios in a short amount of time is considerable.

The focus here, though, was on the life sciences and on genomics in particular. The advances over the last decade have turned genome sequencing from a problem of actually performing the procedure to storing the relevant data. As Dickinson explained, “When we ask our customers where do they spend their time…the actual time they spend sequencing is relatively small. What really kills them is the bioinformatics, which is comprised of a lot of computationally intensive processing and also now interpretation.”

Ten years ago, the Human Genome was completed after 13 years and a $4 billion investment. Today, that same process takes only a day and about a thousand dollars to complete.

As such, genomic sequencing has scaled faster than Moore’s Law over the last decade, as seen in the figure below. This presents an obvious storage issue, especially when policy requires for that information to be kept for several years.

Last week, we highlighted the work being done in BonFIRE to test angles of incidence to maximize the destruction of cancer rays while harming as few working cells as possible. Illumina isn’t working on this problem exactly but they are working on individual genomes to determine cancer causes. Dickinson argued that since everyone clearly has a different genome and that tumor growth is sparked by a malfunction in the cells processing genetic instructions, personalizing cancer treatment means running individual genomes.

“Our solution was to build something called BaseSpace,” Dickinson explained as he delved deeper into how Illumina works with AWS. “In the labs we connect the instruments to BaseSpace using standard internet connections. It turns out that even though they produce a lot of data, they do it at a relatively steady pace.”

Scientists like to keep the raw data of every genome that is sequenced, a commitment that requires approximately 120 GB of data. One might expect for a genome, which consists of about 3 billion bases, to require significantly more than 120 GB to unravel. However, since humans are quite genetically similar to each other, with variances among individuals only representing about 0.1 percent of the genetic signature, they are able to pare the dataset down to that 120 GB level. Once that’s done, according to Dickinson, Illumina can comfortably transfer that data to AWS through BaseSpace at a rate of about 7 Mbps.

Beyond storing genomes and running experimental tests on them, cloud and AWS in particular hope to be a facilitator of scientific collaboration. Today, the top method for sending massive datasets is by sending physical hard drives through the mail, according to Dickinson. The hope is that someday the cloud will become the first choice in delivering massive datasets such that exist in genome sequencing to other facilities, and Illumina is one of the life science companies pushing that paradigm.

Of course, there are more examples of institutions performing HPC applications in AWS, as explained by Shameen. Among such is Pfizer, who uses the Amazon Virtual Private Cloud to run pharmaceutical computational experiments in an extra secure environment, according to Shameen. Globus is a genomics company who, similar to Illumina, transfers their data to AWS, but this time over the Amazon implemented Galaxy platform. Further, Shameen pointed to the Harvard Medical School as an early adopter of AWS for excess and experimental HPC workloads.

As shown by Illumina, running experimental HPC applications in a cloud service like AWS is gaining more traction, especially in the life sciences and genomics department.

Related Articles

The Science Cloud Cometh

Throwing Cancer on the BonFIRE

CERN, Google, and the Future of Global Science Initiatives

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Perverse Incentives? How Economics (Mis-)shaped Academic Science

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creatin Read more…

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This