Floating Genomics to the Cloud with AWS

By Ian Armas Foster

June 5, 2013

As more institutions implement cloud strategies to supplement their best HPC practices, it is important to consider the extent to which companies run HPC applications in the cloud and for which applications it is particularly useful.

David Pellerin and Jafar Shameen, both of HPC Business Development at Amazon Web Services, gave a presentation at AWS Summit 2013 to discuss which industries and companies are using the cloud service to run HPC applications. Not surprisingly, the talk mostly centered on applications in genomics and the life sciences, as highlighted by a third speaker in Alex Dickinson, SVP of Cloud Genomics at Illumina.

“What you end up doing is building a cluster for the worst, nastiest problem you have,” said Pellerin on the risks and costs of building in-house HPC clusters. “You get this big, expensive cluster that for most of the workload, it doesn’t need to be there.” No company should know this better than Amazon, as they started being a cloud services provider as a result of having an excess of computing resources that were only put to use at certain peak times.

Scientific disciplines such as genomics and high energy particle physics turn to cloud computing for certain HPC applications for a fairly basic reason: cloud computing is optimal for experimentation. For Pellerin, computing on AWS allows ‘the ability to fail fast.’ An in-house system is subject to job queue and scheduling limitations that generally prove both costly and time-consuming.

Again, ‘the ability to fail fast’ is an important one for a researcher looking to initially test several hypotheses he or she may have given their large dataset. This capability doesn’t exclusively help those in the sciences, as financial services are running risk analytics on AWS while engineering firms run CAD and CAE simulations for aerospace, according to Pellerin. However, those terms of ‘risk analytics’ and ‘CAD simulations’ imply a theoretical, experimental approach to computing, where the value of running multiple scenarios in a short amount of time is considerable.

The focus here, though, was on the life sciences and on genomics in particular. The advances over the last decade have turned genome sequencing from a problem of actually performing the procedure to storing the relevant data. As Dickinson explained, “When we ask our customers where do they spend their time…the actual time they spend sequencing is relatively small. What really kills them is the bioinformatics, which is comprised of a lot of computationally intensive processing and also now interpretation.”

Ten years ago, the Human Genome was completed after 13 years and a $4 billion investment. Today, that same process takes only a day and about a thousand dollars to complete.

As such, genomic sequencing has scaled faster than Moore’s Law over the last decade, as seen in the figure below. This presents an obvious storage issue, especially when policy requires for that information to be kept for several years.

Last week, we highlighted the work being done in BonFIRE to test angles of incidence to maximize the destruction of cancer rays while harming as few working cells as possible. Illumina isn’t working on this problem exactly but they are working on individual genomes to determine cancer causes. Dickinson argued that since everyone clearly has a different genome and that tumor growth is sparked by a malfunction in the cells processing genetic instructions, personalizing cancer treatment means running individual genomes.

“Our solution was to build something called BaseSpace,” Dickinson explained as he delved deeper into how Illumina works with AWS. “In the labs we connect the instruments to BaseSpace using standard internet connections. It turns out that even though they produce a lot of data, they do it at a relatively steady pace.”

Scientists like to keep the raw data of every genome that is sequenced, a commitment that requires approximately 120 GB of data. One might expect for a genome, which consists of about 3 billion bases, to require significantly more than 120 GB to unravel. However, since humans are quite genetically similar to each other, with variances among individuals only representing about 0.1 percent of the genetic signature, they are able to pare the dataset down to that 120 GB level. Once that’s done, according to Dickinson, Illumina can comfortably transfer that data to AWS through BaseSpace at a rate of about 7 Mbps.

Beyond storing genomes and running experimental tests on them, cloud and AWS in particular hope to be a facilitator of scientific collaboration. Today, the top method for sending massive datasets is by sending physical hard drives through the mail, according to Dickinson. The hope is that someday the cloud will become the first choice in delivering massive datasets such that exist in genome sequencing to other facilities, and Illumina is one of the life science companies pushing that paradigm.

Of course, there are more examples of institutions performing HPC applications in AWS, as explained by Shameen. Among such is Pfizer, who uses the Amazon Virtual Private Cloud to run pharmaceutical computational experiments in an extra secure environment, according to Shameen. Globus is a genomics company who, similar to Illumina, transfers their data to AWS, but this time over the Amazon implemented Galaxy platform. Further, Shameen pointed to the Harvard Medical School as an early adopter of AWS for excess and experimental HPC workloads.

As shown by Illumina, running experimental HPC applications in a cloud service like AWS is gaining more traction, especially in the life sciences and genomics department.

Related Articles

The Science Cloud Cometh

Throwing Cancer on the BonFIRE

CERN, Google, and the Future of Global Science Initiatives

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire