HPC in the Cloud: Old Wine in New Bottles

By Dinesh Agarwal

June 10, 2013

Cloud computing has become mainstream in today’s HPC world. Although there is no consensus on the definition of cloud computing, it is typically perceived as a set of shared and scalable commodity computing resources that are geographically located throughout the world and are available on-demand over the web.

There has been a great amount of confusion over whether cloud computing is a new infrastructure or the same old HPC that we know, wrapped in a new name as a marketing gimmick. Review of the literature points to the fact that a large section of the academic community still debates this question.

Buyya et al. argue that cloud computing appears to be similar to grid computing at a cursory glance. However, a closer observation presents a different case. Armburst et al. supports the claim of Buyya et al., adding that the cloud computing platform uniquely provides an illusion of infinite available resources.

Lee advocates the difference by employing the case of Hurricane Katrina in 2005 to conclude that the only answer to the scientific and operational grand challenge problem is enormous computer power. However, it is not economically possible to dedicate the required amount of resources for this single purpose. Therefore resources must be shared and available on-demand, the platform should be scalable on-demand, and resources should be easily accessible in a user friendly way over the web. The grid computing platform or any other large compute cluster cannot adapt to these guidelines.

Foster et. al presents a comprehensive comparison of the grid computing and the cloud computing platforms. The authors recognize the similarity in the two platforms in terms of the vision and challenges, but the authors also make a solid case to differentiate the two platforms in terms of scale of operation. The authors agree that the more massive scale being offered by the cloud computing platform can demand fundamentally different approaches to tackle a gamut of problems.

Such confusion has hampered the curious nature of researchers to explore cloud computing. With a vague assumption that there aren’t any challenges that have not been previously posed by various distributed computing platforms such as compute-clusters and grid computing, many of the HPC researchers have not been motivated enough to explore the newer research challenges and opportunities in offering computing as a utility. Furthermore, the lack of universal development standards for cloud computing platforms mandate the eScience developers to rewrite their respective applications from scratch for every cloud offering.

Although cloud computing has many aspects closely similar to the traditional parallel and distributed computing platforms, it poses a new set of its own challenges. Traditional large-scale computing resources were not targeted at enabling end-users to rent compute hours with provisioning time being in minutes.

On the contrary, cloud computing facilitates experimentation with an idea on a massive platform without investing the capital in owning the resources. Therefore, it has the potential to target a much bigger set of users not necessarily familiar with the parallel or distributed computing aspects.

In order to enable the HPC researchers who currently work with large distributed computing systems, but do not work with cloud computing, to bring their expertise to cloud computing, it is essential to provide them with easier means of applying their knowledge.

One way of doing this is by allowing them familiar frameworks from a traditional HPC setting. If all cloud platforms supported frameworks and runtimes such as BSP, MPI, and Map-reduce, it would have been so much easier for their adoption. Our research concentrated on the problem of bringing the frameworks such as bag-of-tasks and MPI to cloud platforms. Our implementation on Microsoft’s Azure cloud platform provided some positive results.  

We were able to create (simple) applications from scratch and deploy them in less than 2 hours. The lines of code were about 200-300 lines that includes the file handling, processing, and reporting. These applications were not very complex but they serve as proofs of concept that such frameworks can help motivate developers to create applications for cloud platforms.

We did not beat the performance of the Azure APIs with our frameworks, but that was never the vision. We have increased the programmer productivity by manifold without sacrificing the performance. Our results show performance at par with applications that employ native Azure APIs. Our major contribution is that it is now easier for anyone to write an MPI-style application on the Azure platform without learning a single Azure API and without understanding the idiosyncrasies of the Azure cloud platform.

We envision future research to concentrate on unifying the theme of cloud computing by offering seamless portability among various cloud vendors, rich set of resources to suit a large user base (multi-core, many-cores etc.), better resource management, faster time to provision resources, and improved debugging interface.

About Dinesh Agarwal: Dinesh Agarwal recently graduated with a Ph.D. from Georgia State University. He is currently pursuing a career as an entrepreneur working with both HPC in the cloud and to solve a pesky problem that bothered him as a student with Bookup. You can find him on LinkedIn, @Twitter, or simply email him at dinwal at gmail dot com. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This