The Network as a Scientific Instrument

By Nicole Hemsoth

June 10, 2013

In June 2012, Greg Bell was named the head of the U.S. Department of Energy’s Energy Sciences Network, better known as ESnet.

Funded by the DOE Office of Science, and managed and operated by the ESnet team at Lawrence Berkeley National Laboratory, ESnet provides reliable, high-performance networking capabilities to thousands of researchers tackling many of the world’s most pressing scientific and engineering problems: finding sources of clean energy, understanding climate change, developing advanced materials, and discovering the fundamental nature of our universe. ESnet interconnects scientists at more than 40 DOE sites with experimental and computing facilities in the U.S. and abroad, and with collaborators around the world. 

Invited to give the closing keynote address at the 2012 NORDUnet conference in Oslo, Norway, Bell delivered a presentation entitled “Network as Instrument: The View from Berkeley,” in which he argued that it’s time to start thinking about research networks as instruments for discovery, not just infrastructures for service delivery. The talk struck a chord with the audience, and Bell has since been invited to give versions of the presentation at conferences in the United States and Canada. Most recently, he contributed the April 25 keynote address at the THINK Conference 2013 organized by ORION, the high-speed network linking 1.8 million researchers in Ontario, Canada.

A video of Bell giving a version of this presentation at a meeting on the genomics of energy and the environment, sponsored by the DOE Joint Genome Institute, can be found at the end of the article.

In this Q&A for HPCwire, Berkeley Lab Computing Sciences Communications Manager Jon Bashor talks with Bell about his vision, ESnet news and more.

Question: To start, can you give us a short description of ESnet?

Bell: We’re the Department of Energy’s high-performance networking facility, engineered and optimized for large-scale science. ESnet was created in 1986, making it one of the longest-operating research networks in the world.

ESnet interconnects the entire national lab system, including its supercomputer centers and dozens of large-scale user facilities. Thanks to ESnet, tens of thousands of scientists around the world can transfer data, access remote resources, and collaborate productively. 

ESnet is more than a network, though — it’s a collection of skilled and dedicated people, and a great place to work. Even though we’re located near Silicon Valley, we find it relatively easy to attract talent, because we do cutting-edge engineering in the service of scientific discovery. 

Q: In a sense, ESnet has always been at the forefront of handling Big Data, and now the rest of the community is catching up. How big is Big Data on ESnet?

Bell: Scientific data sets can be truly enormous, up to petabytes in size, and they’re growing rapidly. Sometimes we use the term “Extreme Data” to distinguish data at this scale from the Big Data you’ve read about in other contexts.

The advent of extreme-data science naturally has an impact on the amount of traffic ESnet carries. In fact, we’re growing about twice as fast as the commercial internet — our traffic doubles every 18 months. I don’t foresee this trend slowing down any time soon, because the underlying exponential drivers just keep cranking along.

Everyone reading this understands that high-performance computing changed the way large-scale science is conducted. It’s clear that data intensity will have an important impact as well. Modeling and simulation will continue to be critically important, but these tools will be supplemented by new techniques that can extract insight from complex data sets, exchanged and accessed over ultra-fast research networks.

Q: Although ESnet was created in 1986, its profile seems to have risen considerably in the past five years or so. What’s behind this?

Bell: More and more researchers are discovering that networks are critical to their science. Faster networks mean faster discovery. In addition, ESnet was lucky enough to receive significant stimulus funds a few years ago. That investment allowed us to build the world’s first 100 Gbps network at continental scale, in partnership with Internet2. We finished that project just in time: the previous-generation network was showing its age, and we were beginning to outgrow it. Our new architecture gives us lots of headroom, and the ability to develop new architectures for maximizing scientific productivity. 

We’ve also significantly ramped up our activity in the area of science engagement, partnership, and outreach. We understand that building the world’s fastest science network is not sufficient. We need to make it useful to scientists, and easy to use. That’s harder than it sounds, and we’re still developing models for helping scientists take full advantage of the “fast lanes” we’ve engineered for them. 

One final contributor is the success we’re having with applied research and innovation. This critical activity has been enhanced by our dedicated, national-scale 100 Gbps research testbed, which has supported dozens of researchers in the public and private sectors. We’re really trying to push the envelope on a range of topics — including software-defined networking, alternatives to TCP, and security models for 100 Gbps and faster networks. 

While we appreciate the recognition, it’s not really important unless it helps us advance our overall mission, which is to accelerate discovery for DOE’s Office of Science. And I do think it’s having that effect. Vendors are coming to us to ask about the unique challenges of supporting science, and our users are beginning to have much higher expectations of ESnet. These are both good developments. 

Q: You’ve also been busy. Your talk describing the network as an instrument of discovery has led to multiple invited presentations in North America and Europe — and most recently you gave a version of it as the April 25 keynote address at the THINK conference organized by ORION, the high-speed network in Ontario, Canada. What’s the gist of your presentation?

Bell: My overall goal is to inspire the audience to start thinking about networks differently. Modern research networks such as ESnet and Internet2 (and similar networks around the world) can do a lot more than most people imagine. I try to explain how certain collaborations have profited by incorporating advanced networks into their discovery processes. High-energy physics pioneered this model, and other fields are following. I make the argument that research networks such as ESnet have evolved into extensions of large-scale discovery instruments. For example, the discovery of the Higgs Boson would not have been possible without a worldwide grid computing infrastructure, interconnected by high-speed research networks. Harvey Newman at Caltech pioneered this idea years ago, and the world has finally caught up. 

In these presentations, I also give concrete advice about how people can improve networking in their own back yard. ESnet maintains a website devoted to this sort of simple, practical advice: fasterdata.es.net. If you want to start learning about how to use advanced networks more effectively, this is the place to start. It’s a very popular website, with more hits than www.es.net

Q: Why do you think the message has resonated so well in the networking community?

Bell: It’s not surprising that networkers like to hear that their work is important! But there are a couple of deeper reasons as well. In recent years, networking had become a little dull. Thanks to the challenges of extreme data (and also to the advent of software defined networking), it’s a really exciting place to be again. This new energy is very obvious at networking conferences, and in the academic research community. There are a lot of eyes on networking at the moment. 

Q: Last question: What is ESnet focusing on for the coming year? For the next five years?

Bell: Over the next five years, our challenge will be to accommodate the remarkable growth curve in DOE science traffic while simultaneously making the network useful to many more researchers. It’s hard to believe, but even with our new 100 Gbps network and access to underlying optical capacity to carry multiple terabits per second, we will begin to feel a little cramped by 2018-20. At that point, we think we’ll need to light up a new nationwide optical fiber footprint. Whatever else we do, we’re always in a mode of acceleration and growth!

In the coming year, we’ll focus on recruiting about eight new staff, most of them technical. When you consider that we now have about 40 employees, adding eight is significant. We take recruitment very seriously at ESnet. We look for people who are at the top of their game technically, but that’s not enough — they need to be flexible, great communicators, and exemplary colleagues. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This