The Network as a Scientific Instrument

By Nicole Hemsoth

June 10, 2013

In June 2012, Greg Bell was named the head of the U.S. Department of Energy’s Energy Sciences Network, better known as ESnet.

Funded by the DOE Office of Science, and managed and operated by the ESnet team at Lawrence Berkeley National Laboratory, ESnet provides reliable, high-performance networking capabilities to thousands of researchers tackling many of the world’s most pressing scientific and engineering problems: finding sources of clean energy, understanding climate change, developing advanced materials, and discovering the fundamental nature of our universe. ESnet interconnects scientists at more than 40 DOE sites with experimental and computing facilities in the U.S. and abroad, and with collaborators around the world. 

Invited to give the closing keynote address at the 2012 NORDUnet conference in Oslo, Norway, Bell delivered a presentation entitled “Network as Instrument: The View from Berkeley,” in which he argued that it’s time to start thinking about research networks as instruments for discovery, not just infrastructures for service delivery. The talk struck a chord with the audience, and Bell has since been invited to give versions of the presentation at conferences in the United States and Canada. Most recently, he contributed the April 25 keynote address at the THINK Conference 2013 organized by ORION, the high-speed network linking 1.8 million researchers in Ontario, Canada.

A video of Bell giving a version of this presentation at a meeting on the genomics of energy and the environment, sponsored by the DOE Joint Genome Institute, can be found at the end of the article.

In this Q&A for HPCwire, Berkeley Lab Computing Sciences Communications Manager Jon Bashor talks with Bell about his vision, ESnet news and more.

Question: To start, can you give us a short description of ESnet?

Bell: We’re the Department of Energy’s high-performance networking facility, engineered and optimized for large-scale science. ESnet was created in 1986, making it one of the longest-operating research networks in the world.

ESnet interconnects the entire national lab system, including its supercomputer centers and dozens of large-scale user facilities. Thanks to ESnet, tens of thousands of scientists around the world can transfer data, access remote resources, and collaborate productively. 

ESnet is more than a network, though — it’s a collection of skilled and dedicated people, and a great place to work. Even though we’re located near Silicon Valley, we find it relatively easy to attract talent, because we do cutting-edge engineering in the service of scientific discovery. 

Q: In a sense, ESnet has always been at the forefront of handling Big Data, and now the rest of the community is catching up. How big is Big Data on ESnet?

Bell: Scientific data sets can be truly enormous, up to petabytes in size, and they’re growing rapidly. Sometimes we use the term “Extreme Data” to distinguish data at this scale from the Big Data you’ve read about in other contexts.

The advent of extreme-data science naturally has an impact on the amount of traffic ESnet carries. In fact, we’re growing about twice as fast as the commercial internet — our traffic doubles every 18 months. I don’t foresee this trend slowing down any time soon, because the underlying exponential drivers just keep cranking along.

Everyone reading this understands that high-performance computing changed the way large-scale science is conducted. It’s clear that data intensity will have an important impact as well. Modeling and simulation will continue to be critically important, but these tools will be supplemented by new techniques that can extract insight from complex data sets, exchanged and accessed over ultra-fast research networks.

Q: Although ESnet was created in 1986, its profile seems to have risen considerably in the past five years or so. What’s behind this?

Bell: More and more researchers are discovering that networks are critical to their science. Faster networks mean faster discovery. In addition, ESnet was lucky enough to receive significant stimulus funds a few years ago. That investment allowed us to build the world’s first 100 Gbps network at continental scale, in partnership with Internet2. We finished that project just in time: the previous-generation network was showing its age, and we were beginning to outgrow it. Our new architecture gives us lots of headroom, and the ability to develop new architectures for maximizing scientific productivity. 

We’ve also significantly ramped up our activity in the area of science engagement, partnership, and outreach. We understand that building the world’s fastest science network is not sufficient. We need to make it useful to scientists, and easy to use. That’s harder than it sounds, and we’re still developing models for helping scientists take full advantage of the “fast lanes” we’ve engineered for them. 

One final contributor is the success we’re having with applied research and innovation. This critical activity has been enhanced by our dedicated, national-scale 100 Gbps research testbed, which has supported dozens of researchers in the public and private sectors. We’re really trying to push the envelope on a range of topics — including software-defined networking, alternatives to TCP, and security models for 100 Gbps and faster networks. 

While we appreciate the recognition, it’s not really important unless it helps us advance our overall mission, which is to accelerate discovery for DOE’s Office of Science. And I do think it’s having that effect. Vendors are coming to us to ask about the unique challenges of supporting science, and our users are beginning to have much higher expectations of ESnet. These are both good developments. 

Q: You’ve also been busy. Your talk describing the network as an instrument of discovery has led to multiple invited presentations in North America and Europe — and most recently you gave a version of it as the April 25 keynote address at the THINK conference organized by ORION, the high-speed network in Ontario, Canada. What’s the gist of your presentation?

Bell: My overall goal is to inspire the audience to start thinking about networks differently. Modern research networks such as ESnet and Internet2 (and similar networks around the world) can do a lot more than most people imagine. I try to explain how certain collaborations have profited by incorporating advanced networks into their discovery processes. High-energy physics pioneered this model, and other fields are following. I make the argument that research networks such as ESnet have evolved into extensions of large-scale discovery instruments. For example, the discovery of the Higgs Boson would not have been possible without a worldwide grid computing infrastructure, interconnected by high-speed research networks. Harvey Newman at Caltech pioneered this idea years ago, and the world has finally caught up. 

In these presentations, I also give concrete advice about how people can improve networking in their own back yard. ESnet maintains a website devoted to this sort of simple, practical advice: fasterdata.es.net. If you want to start learning about how to use advanced networks more effectively, this is the place to start. It’s a very popular website, with more hits than www.es.net

Q: Why do you think the message has resonated so well in the networking community?

Bell: It’s not surprising that networkers like to hear that their work is important! But there are a couple of deeper reasons as well. In recent years, networking had become a little dull. Thanks to the challenges of extreme data (and also to the advent of software defined networking), it’s a really exciting place to be again. This new energy is very obvious at networking conferences, and in the academic research community. There are a lot of eyes on networking at the moment. 

Q: Last question: What is ESnet focusing on for the coming year? For the next five years?

Bell: Over the next five years, our challenge will be to accommodate the remarkable growth curve in DOE science traffic while simultaneously making the network useful to many more researchers. It’s hard to believe, but even with our new 100 Gbps network and access to underlying optical capacity to carry multiple terabits per second, we will begin to feel a little cramped by 2018-20. At that point, we think we’ll need to light up a new nationwide optical fiber footprint. Whatever else we do, we’re always in a mode of acceleration and growth!

In the coming year, we’ll focus on recruiting about eight new staff, most of them technical. When you consider that we now have about 40 employees, adding eight is significant. We take recruitment very seriously at ESnet. We look for people who are at the top of their game technically, but that’s not enough — they need to be flexible, great communicators, and exemplary colleagues. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This