Alternatives Emerge as Linpack Loses Ground

By Nicole Hemsoth

June 18, 2013

Questions have been swirling around with more velocity lately about the viability of high performance Linpack (HPL) as a representative measure for assessing true HPC application performance. As new architectures and different data access patterns infiltrate a growing army of HPC applications, consensus is building that new metrics are needed to keep pace.

At the same time, over its 20-year history. Linpack has become a well-respected and understood benchmark that carries significant weight within and outside of HPC circles. Even if there is disagreement about the validity of the results against real life use, there is no doubt that the metric has brought significant outside attention to HPC–and some standard to compare historical and current systems.

But with great benchmarks come great manipulations. Systems that strive to top the Top 500 list based on this rating method end up making some either/or decisions about architecture versus tailoring systems to meet application demands.

Unlike many of today’s HPL chart-toppers, the early HPL results served up a solid ranking that matched the actual performance (versus having wide disparity between peak and sustained figures). For these and other reasons, HPL as the primary benchmark has been called into question–both by the Top 500 team and by user sites, including NCSA, which made  a decision to focus on real application performance over meeting Linpack targets.

Dr. Jack Dongarra, one of the founders of the Top 500, has been vocal about the need to rethink the trusty benchmark. Along with Sandia National Lab’s Michael Heroux, he presented a new concept for ranking systems called the high performance conjugate gradient (HPCG) benchmark, which was spelled out during the International Supercomputing Conference today in Leipzig, Germany.

While Dongarra doesn’t think it would be useful to entirely eliminate HPL as a metric, in part because of its reach and recognition, he believes it should be used as an alternative way to rank systems in much the same way as the Green 500 shuffles items on the list according to its own benchmark.

The goal of the new metric would be to represent computation and data access patterns that are found in many common applications. The goal, they say is to “strive for a better correlation to real scientific application performance…and drive computer system design and implementation in directions that will better impact performance improvement.”

This is an important issue to address since each iteration of the Top 500 will show increasing gaps between real versus theoretical performance–and applications are moving much closer to differential equations bases, which HPL doesn’t address. Just as it did in the 1990s, HPL solves on linear lines that favors floating point and memory systems–which are not valid for an expanding set of HPC applications.

Coupled with that, the rise in accelerators and coprocessors (more on that in the context of the Top 500 here) isn’t expected to halt soon–meaning these flaws will become far more pronounced. For instance, as Dongarra and Heroux point out using Titan (18.688 nodes with 16-core, 32 GB AMD Opterons and a 6GB K20 GPU):

“Titan was the top-ranked system in November,, 2012 using HPL. However, in obtaining the HPL result on Titan, the Opteron processors played only a supporting role in the result. All floating point computation and all data were resident on the GPUs. In contrast, real applications, when initially ported to Titan will typically run solely on the CPUs and selectively offload computation to the GPU for acceleration.”

With this in mind, they say that their new metric has to be able address examples like this by driving improvements in systems to benefit applications–thereby assigning a metric that can be optimized for a specific platform, but offer the end result of creating better real application performance and reliability.

The proposed HPCG benchmark, detailed in this primer beginning on page 11, will “consider the preconditioned conjugate gradient (PCG) method with a local symmetric Gauss-Seidel preconditioner.” Again, see the primer for more detailed information. The reference code will be implemented in C++ using MPI and OpenMP.

Dongarra and Heroux argue that through this method, they will be able to address what HPL can’t. For instance, they can cover most of the main communication and computational methods; allow for a score that can represent benefits from boosting local memory system performance and can go far beyond floating point math.

The two researchers note that they expect that the new benchmark will adapt to take into account emerging trends as they happen but “the relevance of HPL as a proxy for real application performance has become very low and we must seek and alternative.”

Dongarra told us today that we can expect a release at SC13–just in time for the next round of rankings.

Related Articles

Intel Snaps New Grips to HPC Hook

Top 500 Results Reveal Global Acceleration, Balance Shift

Six Can’t Miss Sessions for ISC’13

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This