Alternatives Emerge as Linpack Loses Ground

By Nicole Hemsoth

June 18, 2013

Questions have been swirling around with more velocity lately about the viability of high performance Linpack (HPL) as a representative measure for assessing true HPC application performance. As new architectures and different data access patterns infiltrate a growing army of HPC applications, consensus is building that new metrics are needed to keep pace.

At the same time, over its 20-year history. Linpack has become a well-respected and understood benchmark that carries significant weight within and outside of HPC circles. Even if there is disagreement about the validity of the results against real life use, there is no doubt that the metric has brought significant outside attention to HPC–and some standard to compare historical and current systems.

But with great benchmarks come great manipulations. Systems that strive to top the Top 500 list based on this rating method end up making some either/or decisions about architecture versus tailoring systems to meet application demands.

Unlike many of today’s HPL chart-toppers, the early HPL results served up a solid ranking that matched the actual performance (versus having wide disparity between peak and sustained figures). For these and other reasons, HPL as the primary benchmark has been called into question–both by the Top 500 team and by user sites, including NCSA, which made  a decision to focus on real application performance over meeting Linpack targets.

Dr. Jack Dongarra, one of the founders of the Top 500, has been vocal about the need to rethink the trusty benchmark. Along with Sandia National Lab’s Michael Heroux, he presented a new concept for ranking systems called the high performance conjugate gradient (HPCG) benchmark, which was spelled out during the International Supercomputing Conference today in Leipzig, Germany.

While Dongarra doesn’t think it would be useful to entirely eliminate HPL as a metric, in part because of its reach and recognition, he believes it should be used as an alternative way to rank systems in much the same way as the Green 500 shuffles items on the list according to its own benchmark.

The goal of the new metric would be to represent computation and data access patterns that are found in many common applications. The goal, they say is to “strive for a better correlation to real scientific application performance…and drive computer system design and implementation in directions that will better impact performance improvement.”

This is an important issue to address since each iteration of the Top 500 will show increasing gaps between real versus theoretical performance–and applications are moving much closer to differential equations bases, which HPL doesn’t address. Just as it did in the 1990s, HPL solves on linear lines that favors floating point and memory systems–which are not valid for an expanding set of HPC applications.

Coupled with that, the rise in accelerators and coprocessors (more on that in the context of the Top 500 here) isn’t expected to halt soon–meaning these flaws will become far more pronounced. For instance, as Dongarra and Heroux point out using Titan (18.688 nodes with 16-core, 32 GB AMD Opterons and a 6GB K20 GPU):

“Titan was the top-ranked system in November,, 2012 using HPL. However, in obtaining the HPL result on Titan, the Opteron processors played only a supporting role in the result. All floating point computation and all data were resident on the GPUs. In contrast, real applications, when initially ported to Titan will typically run solely on the CPUs and selectively offload computation to the GPU for acceleration.”

With this in mind, they say that their new metric has to be able address examples like this by driving improvements in systems to benefit applications–thereby assigning a metric that can be optimized for a specific platform, but offer the end result of creating better real application performance and reliability.

The proposed HPCG benchmark, detailed in this primer beginning on page 11, will “consider the preconditioned conjugate gradient (PCG) method with a local symmetric Gauss-Seidel preconditioner.” Again, see the primer for more detailed information. The reference code will be implemented in C++ using MPI and OpenMP.

Dongarra and Heroux argue that through this method, they will be able to address what HPL can’t. For instance, they can cover most of the main communication and computational methods; allow for a score that can represent benefits from boosting local memory system performance and can go far beyond floating point math.

The two researchers note that they expect that the new benchmark will adapt to take into account emerging trends as they happen but “the relevance of HPL as a proxy for real application performance has become very low and we must seek and alternative.”

Dongarra told us today that we can expect a release at SC13–just in time for the next round of rankings.

Related Articles

Intel Snaps New Grips to HPC Hook

Top 500 Results Reveal Global Acceleration, Balance Shift

Six Can’t Miss Sessions for ISC’13

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This