My Supercomputer is Bigger Than Yours!

By Andrew Jones

June 18, 2013

Once again, China officially has the fastest supercomputer in the world. All the careful preparations of marketing departments throughout the HPC community leading up to ISC were rendered mute, as the usual slurry of ISC’13 “me too” press releases were blown aside by the revelation of Tianhe-2’s 50+ petaFLOPS.

Chinese supercomputing had again sprung from rumors to deliver the harsh reality that the USA was no longer home to the most powerful known supercomputer in the world. China’s new supercomputer is not only faster than the USA’s leading contenders – it is twice as fast. And, to pour salt into the American wounds, Tianhe-2 is not a stunt machine with buckets of cheap FLOPS lashed together with just enough wet string to run Linpack. It is a custom designed supercomputer combining next generation Chinese interconnect technology with American CPUs and HPC coprocessors.

The USA’s HPC community seems unsure whether to hide under the duvet and try to reassure themselves of American HPC leadership by quoting other metrics, or to seize upon this opportunity to demonstrate to their government masters how other nations are aggressively pursuing supercomputing and thus focus their efforts on securing funding for exascale and other future HPC needs. Meanwhile, the European HPC community enjoys a hint of smugness that the USA’s leadership has been taken away, smothered by an uncomfortable knowledge that such a feat is unlikely to ever be achieved by Europe.

Having a more powerful supercomputer is not merely useful for “mine is bigger than yours” contests – a more powerful supercomputer can deliver more science and engineering in a given time than a smaller system through sheer capacity. It can enable major advances in science and engineering through capability – exploring the leading edge of what is possible with modeling and simulation at scale. It can inspire a generation of users to pursue computational science and engineering. It can inspire a computing technology industry and wider commercial applications of HPC.

Indeed, a more powerful supercomputer is so important that nearly everyone who has a supercomputer tries to find criteria such that theirs is the leading system in a given category, whether “fastest commercial system”, “biggest academically owned system”, or whatever.

Yes, size matters.

But – what if size did not matter? Pretend that all supercomputers were the same size and couldn’t be made bigger. Or perhaps they were all so big and cheap that any user could get as much resource as they needed with zero wait.

In this obtuse reality, the size of the supercomputer no longer correlates to the capacity or capability of science that can be achieved.

What would matter? Other parts of the ecosystem would become the enablers of computational leadership, to produce the leading edge science and engineering, and the resulting economic benefits. Software, people, applications, etc. would become the differentiators.

The researchers who could lead the way in a given computational field would no longer be the ones who had access to the biggest machine, but the ones who could make best use of the same machine size as everyone else. That might mean the most scalable code, or the fastest code for a given problem size, or the most robust and accurate code. It might mean the group who had the best skills strategy to ensure continued development of the computational skills within their group.

Companies could not secure a competitive advantage through computing capacity – they would have to seek better algorithms (scalable, accurate, validated, …) and better investment in the people (developers and users) who could turn computational applications into business results.

How might today’s familiar international competitiveness arguments change in this weird world? There would be no point urging governments to fund development of technology (our pretend world assumes hardware can never be the differentiator). Evoking national pride by deploying bigger systems than rival countries would be impossible. The national need to pursue competitiveness could only be serviced by supporting the development of algorithms, computational methods, scalable software engineering, scientific applications, etc. – and above all a pipeline of computationally aware people/skills.

How would a Top500 equivalent work in this world? (Because there would still be a natural human need to measure progress and compare with other computational users.) I have no answer to this – but it is probably a critical question (even in the real world, not just my pretend world) – how to measure supercomputing capability if not by anything directly correlated to size of the machine?

Instead of tracking roadmaps from hardware vendors, technology planning might consist more of algorithm roadmaps, software implementation roadmaps, recruitment & mentoring proposals, etc.

Ultimately, nothing in the ranking of supercomputing players would change – the richest countries and companies would still be the winners as they could invest more strongly in people (basic methods research, software engineering, science applications, etc.). Some countries/companies would “punch above their weight” – those who understood the need to invest in the right things and did so with more commitment than their rivals. (How is that different to the real world?)

Indeed, perhaps that is where my little “size doesn’t matter” experiment leads me – to conclude that the leadership in supercomputing (and thus the benefits to research, innovation, economic impact, etc.) will always belong to those who understand what supercomputing can do, along with how to do it better – and then act on that understanding.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This