My Supercomputer is Bigger Than Yours!

By Andrew Jones

June 18, 2013

Once again, China officially has the fastest supercomputer in the world. All the careful preparations of marketing departments throughout the HPC community leading up to ISC were rendered mute, as the usual slurry of ISC’13 “me too” press releases were blown aside by the revelation of Tianhe-2’s 50+ petaFLOPS.

Chinese supercomputing had again sprung from rumors to deliver the harsh reality that the USA was no longer home to the most powerful known supercomputer in the world. China’s new supercomputer is not only faster than the USA’s leading contenders – it is twice as fast. And, to pour salt into the American wounds, Tianhe-2 is not a stunt machine with buckets of cheap FLOPS lashed together with just enough wet string to run Linpack. It is a custom designed supercomputer combining next generation Chinese interconnect technology with American CPUs and HPC coprocessors.

The USA’s HPC community seems unsure whether to hide under the duvet and try to reassure themselves of American HPC leadership by quoting other metrics, or to seize upon this opportunity to demonstrate to their government masters how other nations are aggressively pursuing supercomputing and thus focus their efforts on securing funding for exascale and other future HPC needs. Meanwhile, the European HPC community enjoys a hint of smugness that the USA’s leadership has been taken away, smothered by an uncomfortable knowledge that such a feat is unlikely to ever be achieved by Europe.

Having a more powerful supercomputer is not merely useful for “mine is bigger than yours” contests – a more powerful supercomputer can deliver more science and engineering in a given time than a smaller system through sheer capacity. It can enable major advances in science and engineering through capability – exploring the leading edge of what is possible with modeling and simulation at scale. It can inspire a generation of users to pursue computational science and engineering. It can inspire a computing technology industry and wider commercial applications of HPC.

Indeed, a more powerful supercomputer is so important that nearly everyone who has a supercomputer tries to find criteria such that theirs is the leading system in a given category, whether “fastest commercial system”, “biggest academically owned system”, or whatever.

Yes, size matters.

But – what if size did not matter? Pretend that all supercomputers were the same size and couldn’t be made bigger. Or perhaps they were all so big and cheap that any user could get as much resource as they needed with zero wait.

In this obtuse reality, the size of the supercomputer no longer correlates to the capacity or capability of science that can be achieved.

What would matter? Other parts of the ecosystem would become the enablers of computational leadership, to produce the leading edge science and engineering, and the resulting economic benefits. Software, people, applications, etc. would become the differentiators.

The researchers who could lead the way in a given computational field would no longer be the ones who had access to the biggest machine, but the ones who could make best use of the same machine size as everyone else. That might mean the most scalable code, or the fastest code for a given problem size, or the most robust and accurate code. It might mean the group who had the best skills strategy to ensure continued development of the computational skills within their group.

Companies could not secure a competitive advantage through computing capacity – they would have to seek better algorithms (scalable, accurate, validated, …) and better investment in the people (developers and users) who could turn computational applications into business results.

How might today’s familiar international competitiveness arguments change in this weird world? There would be no point urging governments to fund development of technology (our pretend world assumes hardware can never be the differentiator). Evoking national pride by deploying bigger systems than rival countries would be impossible. The national need to pursue competitiveness could only be serviced by supporting the development of algorithms, computational methods, scalable software engineering, scientific applications, etc. – and above all a pipeline of computationally aware people/skills.

How would a Top500 equivalent work in this world? (Because there would still be a natural human need to measure progress and compare with other computational users.) I have no answer to this – but it is probably a critical question (even in the real world, not just my pretend world) – how to measure supercomputing capability if not by anything directly correlated to size of the machine?

Instead of tracking roadmaps from hardware vendors, technology planning might consist more of algorithm roadmaps, software implementation roadmaps, recruitment & mentoring proposals, etc.

Ultimately, nothing in the ranking of supercomputing players would change – the richest countries and companies would still be the winners as they could invest more strongly in people (basic methods research, software engineering, science applications, etc.). Some countries/companies would “punch above their weight” – those who understood the need to invest in the right things and did so with more commitment than their rivals. (How is that different to the real world?)

Indeed, perhaps that is where my little “size doesn’t matter” experiment leads me – to conclude that the leadership in supercomputing (and thus the benefits to research, innovation, economic impact, etc.) will always belong to those who understand what supercomputing can do, along with how to do it better – and then act on that understanding.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the most experienced cluster administrators. Maintaining a balan Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This