My Supercomputer is Bigger Than Yours!

By Andrew Jones

June 18, 2013

Once again, China officially has the fastest supercomputer in the world. All the careful preparations of marketing departments throughout the HPC community leading up to ISC were rendered mute, as the usual slurry of ISC’13 “me too” press releases were blown aside by the revelation of Tianhe-2’s 50+ petaFLOPS.

Chinese supercomputing had again sprung from rumors to deliver the harsh reality that the USA was no longer home to the most powerful known supercomputer in the world. China’s new supercomputer is not only faster than the USA’s leading contenders – it is twice as fast. And, to pour salt into the American wounds, Tianhe-2 is not a stunt machine with buckets of cheap FLOPS lashed together with just enough wet string to run Linpack. It is a custom designed supercomputer combining next generation Chinese interconnect technology with American CPUs and HPC coprocessors.

The USA’s HPC community seems unsure whether to hide under the duvet and try to reassure themselves of American HPC leadership by quoting other metrics, or to seize upon this opportunity to demonstrate to their government masters how other nations are aggressively pursuing supercomputing and thus focus their efforts on securing funding for exascale and other future HPC needs. Meanwhile, the European HPC community enjoys a hint of smugness that the USA’s leadership has been taken away, smothered by an uncomfortable knowledge that such a feat is unlikely to ever be achieved by Europe.

Having a more powerful supercomputer is not merely useful for “mine is bigger than yours” contests – a more powerful supercomputer can deliver more science and engineering in a given time than a smaller system through sheer capacity. It can enable major advances in science and engineering through capability – exploring the leading edge of what is possible with modeling and simulation at scale. It can inspire a generation of users to pursue computational science and engineering. It can inspire a computing technology industry and wider commercial applications of HPC.

Indeed, a more powerful supercomputer is so important that nearly everyone who has a supercomputer tries to find criteria such that theirs is the leading system in a given category, whether “fastest commercial system”, “biggest academically owned system”, or whatever.

Yes, size matters.

But – what if size did not matter? Pretend that all supercomputers were the same size and couldn’t be made bigger. Or perhaps they were all so big and cheap that any user could get as much resource as they needed with zero wait.

In this obtuse reality, the size of the supercomputer no longer correlates to the capacity or capability of science that can be achieved.

What would matter? Other parts of the ecosystem would become the enablers of computational leadership, to produce the leading edge science and engineering, and the resulting economic benefits. Software, people, applications, etc. would become the differentiators.

The researchers who could lead the way in a given computational field would no longer be the ones who had access to the biggest machine, but the ones who could make best use of the same machine size as everyone else. That might mean the most scalable code, or the fastest code for a given problem size, or the most robust and accurate code. It might mean the group who had the best skills strategy to ensure continued development of the computational skills within their group.

Companies could not secure a competitive advantage through computing capacity – they would have to seek better algorithms (scalable, accurate, validated, …) and better investment in the people (developers and users) who could turn computational applications into business results.

How might today’s familiar international competitiveness arguments change in this weird world? There would be no point urging governments to fund development of technology (our pretend world assumes hardware can never be the differentiator). Evoking national pride by deploying bigger systems than rival countries would be impossible. The national need to pursue competitiveness could only be serviced by supporting the development of algorithms, computational methods, scalable software engineering, scientific applications, etc. – and above all a pipeline of computationally aware people/skills.

How would a Top500 equivalent work in this world? (Because there would still be a natural human need to measure progress and compare with other computational users.) I have no answer to this – but it is probably a critical question (even in the real world, not just my pretend world) – how to measure supercomputing capability if not by anything directly correlated to size of the machine?

Instead of tracking roadmaps from hardware vendors, technology planning might consist more of algorithm roadmaps, software implementation roadmaps, recruitment & mentoring proposals, etc.

Ultimately, nothing in the ranking of supercomputing players would change – the richest countries and companies would still be the winners as they could invest more strongly in people (basic methods research, software engineering, science applications, etc.). Some countries/companies would “punch above their weight” – those who understood the need to invest in the right things and did so with more commitment than their rivals. (How is that different to the real world?)

Indeed, perhaps that is where my little “size doesn’t matter” experiment leads me – to conclude that the leadership in supercomputing (and thus the benefits to research, innovation, economic impact, etc.) will always belong to those who understand what supercomputing can do, along with how to do it better – and then act on that understanding.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This