SLA-Aware Scheduling and Virtual Efficiency

By Ian Armas Foster

June 18, 2013

An important problem to solve when bringing HPC applications to the cloud is determining how to make a virtualized set of clusters act like a physical high performance machine that can be accessed in-house.

Researchers from the Suddhananda Engineering and Research Centre in Bhubaneswar, India developed a job scheduling system, which they call Service Level Agreement (SLA) scheduling, that is meant to achieve acceptable methods of resource provisioning similar to that of potential in-house systems. They combined that with an on-demand resource provisioner to ensure utilization optimization of virtual machines.

The SLA nomenclature is meant to express their addressing of the issues HPC applications could potentially cause with service providers. Computing in the cloud brings along various security requirements that must be strictly adhered to. This can be a problem when traditional workload management and scheduling is not necessarily meant to account for these conditions.

As shown in the diagram below, the SLA scheduler makes constant checks on the cloud resources to ensure both the lack of service violations and optimization of resources.

In a virtualized environment, resources are often provisioned separately. Resource provisioning is perhaps better known by its constituent methods, IaaS, PaaS, and SaaS. The researchers’ goal here was to take advantage of all provisioning methods by placing the SLA scheduler atop them all.

“The Cloud provisioning and deployment model presented in the figure below shows a scenario combining the three different types of resource provisioning to host service requested from customers,” the researchers noted. As they explain, the system is meant to validate and schedule the workloads such that slots in the various systems are filled optimally. “The customers place their service deployment requests to the service portal, which passes the requests to the request processing component to validate the requests. If the request is validated, it is then forwarded to the scheduler.”

Per the architecture diagram above, the SLA scheduling system connects to the service portal on the software side while accessing the provision engines in both the PaaS and the actual physical machines of the Iaas. Workload management is less of a problem in a system where all of the machines in next to each other, as information can be more easily collected and aggregated on where potential overloads are happening.

In a virtualized system, one where potentially the machines working with each other lie miles apart, the workload and connectivity bits are significantly more critical. As HPC applications run in the cloud tend to be of an experimental nature, where results are expected quickly such that further follow-up experiments can be run, it is essential that the scheduler here reduces bottleneck as much as possible.

The results, according to the researchers, of their proposed system are promising, as shown in the table below.

While it might be intuitive that an SLA-aware scheduler might take more time as a result of constantly checking the machines to ensure validation, one must consider that virtual machines would often be programmed to shut down than commit SLA violations, a process that adds significant more time than a simple slowdown.

In the scenario where the researchers tested only HPC applications, the SLA-aware scheduler coupled with the resource optimization measure to levels significantly better than applications run without those implementations, as seen in the diagram below.

As the researchers explained, “The scheduler achieved 100 percent resource utilization in scheduling and deploying the HPC applications as depicted by the first bar. That means the available resources are fully utilized.” That first bar applied to web applications, where parallelization is less important, and is meant to serve as a baseline. “Although the resources were fully utilized, the scheduler could only achieve 80 percent deployment efficiency. This is better result than the 49.67 percent achieved by the equivalent scenario in the fixed group.”

The key here was to vary resource utilization, as noted that the sub-optimal group was ‘fixed,’ meaning there was relatively little workload movement to underutilized resources. When that movement happened, resources were used approximately 60 percent more efficiently.

“By experiments,” the researchers concluded, “the proposed architecture is efficient in monitoring and detecting individual application SLA violation situations. Further one can automatically find the optimal measurement intervals by sampling different ones and checking their net utility values.” By doing this, the research team determined that a scheduling system that accounts for service agreements and actively works to avoid problems is actually more efficient than one that does not. Further, they drove home the importance of resource management and provisioning in creating an efficient virtual HPC environment.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

HPE Extreme Performance Solutions

Accelerating Genomics Research with a New Breakthrough Architecture

The field of genomics is revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Livermore Computing, Reddit Asked Them Anything

August 10, 2017

In case you missed it, the staff of Livermore Computing (LC) at the Lawrence Livermore National Laboratory (LLNL) recently fielded some questions from the internet, part of Reddit's Science Ask Me Anything (AMA) series. Read more…

By Tiffany Trader

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This