Research Roundup: Virtualization and Low Latency for Global Clouds

By Nicole Hemsoth

June 21, 2013

In this week’s hand-picked assortment, researchers consider virtualizing HPC as a Service, low latency on global cloud systems as well as accelerators and surveying the HPC cloud environment as a whole.

Hardware-Assisted Virtualization for Deploying HPC-as-a-Service

Virtualization has been the main driver behind the rise of cloud computing, argued researchers out of the A*STAR Institute of High Performance Computing in Singapore. Despite cloud computing’s tremendous benefits to applications (e.g. enterprise, Web, game/ multimedia, life sciences, and data analytics), its success in High Performance Computing (HPC) domain has been limited. The oft-cited reason is latency caused by virtualization.

Meanwhile, according to the researchers, the rising popularity of virtualization has compelled CPU vendors to incorporate virtualization technology (VT) in chips. This hardware VT is believed to accelerate context switching, speed up memory address translation, and enable I/O direct access; which are basically sources of virtualization overheads.

Their paper reports the evaluation on computation and communication performance of different virtualized environments, i.e., Xen and KVM, leveraging hardware VT. Different network fabrics, namely Gigabit Ethernet and InfiniBand, were employed and tested in the virtualized environments and their results were compared against those in the native environments.

A real-world HPC application (an MPI-based hydrodynamic simulation) was also used to assess the performance. Outcomes indicate that hardware-assisted virtualization can bring HPC-as-a-Service into realization.

Next–Low Latency Communications in Global Cloud Computing Systems->

Low Latency Communications in Global Cloud Computing Systems

A paper out of McMaster University in Hamilton explores technologies to achieve low-latency energy-efficient communications in Global-Scale Cloud Computing systems.

A global-scale cloud computing system linking 100 remote data-centers can interconnect potentially 5M servers, considerably larger, according to the paper, than the size of traditional High-Performance-Computing (HPC) machines. Traditional HPC machines use tightly coupled processors and networks which rarely drop packets.

In contrast, today’s IP Internet is a relatively loosely-coupled Best-Effort network with poor latency and energy-efficiency guarantees, with relatively high packet loss rates. This paper explores the use of a recently-proposed Future-Internet network, which uses a QoS-aware router scheduling algorithm combined with a new IETF resource reservation signalling technology, to achieve improved latency and energy-efficiency in cloud computing systems.

A Maximum-Flow Minimum-Energy routing algorithm is used to route high-capacity “trunks” between data-centers distributed over the continental USA, using a USA IP network topology. The communications between virtual machines in remote data-centers are aggregated and multiplexed onto the trunks, to achieve significantly improved energy-efficiency.

According to theory and simulations, the large and variable queueing delays of traditional Best-Effort Internet links can be eliminated, and the latency over the cloud can be reduced to near-minimal values, i.e., the fiber latency. The maximum fiber latencies over the Sprint USA network are approx. 20 milliseconds, comparable to hard disk drive latencies, and multithreading in virtual machines can be used to hide these latencies.

Furthermore, if existing dark-fiber over the continental network is activated, the bisection bandwidth available in a global-scale cloud computing system can rival that achievable in commercial HPC machines.

Next–Integrating Accelerators Using CometCloud->

Integrating Accelerators Using CometCloud

Application accelerators can include GPUs, cell processors, FPGAs and other custom application specific integrated circuit (ASICs) based devices. According to research out of Cardiff University, a number of challenges arise when these devices must be integrated as part of a single computing environment, relating to both the diversity of devices and the supported programming models.

One key challenge they consider is the selection of the most appropriate device for accelerating a particular application. Their approach makes use of a broker-based matchmaking system, which attempts to compare the capability of a device with one or more application kernels, utilising the CometCloud tuple space-based coordination mechanism to facilitate the matchmaking process.

They described the architecture of our system and how it utilises performance prediction to select devices for particular application kernels. They demonstrated that within a highly dynamic HPC system, their approach can increase the performance of applications by using code porting techniques to the most suitable device found, also; (a) allowing the dynamic addition of new devices to the system, and (b) allowing applications to fall back and utilise the best alternative device available if the preferred device cannot be found or is unavailable.

Next–A Study of High Performance Computing on the Cloud->

A Study of High Performance Computing on the Cloud

The popularity of Amazon’s EC2 cloud platform has increased in recent years, according to research out of the University of Arizona and Lawrence Livermore National Laboratory. However, the researchers argue, many high-performance computing (HPC) users consider dedicated high-performance clusters, typically found in large compute centers such as those in national laboratories, to be far superior to EC2 because of significant communication overhead of the latter.

Their view was that this is quite narrow and the proper metrics for comparing high-performance clusters to EC2 is turnaround time and cost. In their paper, they compared the top-of-the-line EC2 cluster to HPC clusters at Lawrence Livermore National Laboratory (LLNL) based on turnaround time and total cost of execution.

When measuring turnaround time, they included expected queue wait time on HPC clusters. Their results show that although as expected, standard HPC clusters are superior in raw performance, EC2 clusters may produce better turnaround times. To estimate cost, they developed a pricing model—relative to EC2’s node-hour prices—to set node-hour prices for (currently free) LLNL clusters. They observed that the cost-effectiveness of running an application on a cluster depends on raw performance and application scalability.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This