Samplify Puts the Squeeze on Compression

By Nicole Hemsoth

June 27, 2013

Last week at ISC, Silicon Valley-based, Samplify Systems announced its APAX HDF Storage Library for HPC, which they say can push disk throughput by 3-8x and reduce storage needs for those tapping the HDF5 file format. 

This could find wide appeal in a number of HPC application areas, including those related to CFD, climate modeling and multiphysics simulations–in short, the areas where HDF5 (and memory, disk and network bottlenecks) are common.

However, when you start talking compression to researchers, the first questions that come to mind are around data quality–followed closely by concerns about performance. Many scientists, especially in the data-intensive field of climate studies, look to GRIB2-based encoding methods, which while lossy, have served the community well. The problem, however, is that this still introduces some data quality and processing overhead–and for these users, neither are optimal sacrifices.

When it comes to compression, scientists are stuck between choosing lossless compression, which maintain fidelity but can be cumbersome and slow or lossy compression, which produces its own host of worries when it comes to archiving and validating scientific data. 

But compression, even if it has the risk-laden name of “lossy”, doesn’t mean a pinch in quality–at least not if users are granted fine-tuned control over the compression features. According to Samplify Systems’ CEO, Allan Evans, the sacrifices on the lossy compression front are minimal–at least for those who are looking into their own APAX technology and their profiler technology which lets users set the accuracy to encoding levels. 

Further, he explains, that another fear is that such compression would require dramatic code tweaking. He says that with their technology, this provides a transparent layer which actually opens access to the data. 

According to Evans, lossy compression isn’t the risky business one might suspect–and it can lead to better performance when done properly. While this type of technology has wide play in other, non-HPC markets, a presentation from the company’s CTO at ISC ’13 last week spelled out just how viable extreme compression can be for a wide set of HPC applications, especially those with a large number of variables that can be run as standalone simulations against existing datasets.

In that presentation it was argued that “the most easily obtained benefit from lossy compression of climate datasets is a significant reduction in disk file size and a corresponding increase in disk bandwidth.” In terms of throughput, the CTO noted that their single-pass algorithm led to better cache usage and that overall, compared to the aforementioned compression methods, this offered a 1.6x improvement in compression and “better encoding for most climate variables due to its superior compression or data quality.”

To put this in better context, take a climate simulation, which can have close to 100 different state variables (pressure, temperature, etc), each of which is multi-dimensional (for example, different latitudes, altitudes, etc.). To add complexity, this simulation runs for a period of time, say between now and 2050. The simulation will provide interval-based snapshots while on the backend, the commonly-used HDF5 file format will containerize each of those variables for each snapshot–saving metadata so the information can be read back over quickly. The goal is to have a simulation where a user can pinpoint a particular place and date to understand exactly what the weather will be like. 

Samplify has uncovered a way to use lossy compression to reduce these HDF5 files without changing the solver application (as long as it’s already using HDF5, of course). The data compression is then applied in real-time first as the data is being saved or read back from the file–then the size is reduced via their plug-in to HDF5. The operator can then decide how much compression to apply in the face of what will be lost–in essence, to see how they can go–before the fidelity is at unacceptable levels. 

This means it’s possible for the scientist (versus a developer) to profile different variables–applying variable by variable compression that’s optimized for each variable type.

Outside of the compression angle, there is also the issue of performance. The APAX technology is Samplify’s numerical encoder that targets any integer or floating point data type and weighs in at 3:1 to 8:1 on the encoding rate scale. The key here is that it does so without having any direct impact on the actual application. Their APAX libraries can be snapped into an application’s core to let it work on data in memory, on disk or streaming across networks. It’s primed for Intel CPUs–Evans says the throughput is around 200 MB/sec per core.

While there appears no way to “try before you buy” directly, Samplify hopes this will be a valuable enough proposition for climatology and other researchers to plunk down an estimated $50,000 for a petabyte storage array. He notes that when priced against other solutions that take aim at the bottenecks in large-scale storage environments, this is on par, if not better. 

As it stands, the company has lined up some impressive use cases, including one of note at Lawrence Livermore National Laboratory that’s worth taking a look at.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter strategy, encompassing a number of product and technology u Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

KIM, a New South Korean Global Weather Forecasting Model, Nears Deployment

August 9, 2018

The United Kingdom Met Office’s Unified Model (UM) has been in constant use around the world for over 25 years, serving – as its name suggests – as a unified hub for immediate weather forecasts, global climate mode Read more…

By Oliver Peckham

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This