Samplify Puts the Squeeze on Compression

By Nicole Hemsoth

June 27, 2013

Last week at ISC, Silicon Valley-based, Samplify Systems announced its APAX HDF Storage Library for HPC, which they say can push disk throughput by 3-8x and reduce storage needs for those tapping the HDF5 file format. 

This could find wide appeal in a number of HPC application areas, including those related to CFD, climate modeling and multiphysics simulations–in short, the areas where HDF5 (and memory, disk and network bottlenecks) are common.

However, when you start talking compression to researchers, the first questions that come to mind are around data quality–followed closely by concerns about performance. Many scientists, especially in the data-intensive field of climate studies, look to GRIB2-based encoding methods, which while lossy, have served the community well. The problem, however, is that this still introduces some data quality and processing overhead–and for these users, neither are optimal sacrifices.

When it comes to compression, scientists are stuck between choosing lossless compression, which maintain fidelity but can be cumbersome and slow or lossy compression, which produces its own host of worries when it comes to archiving and validating scientific data. 

But compression, even if it has the risk-laden name of “lossy”, doesn’t mean a pinch in quality–at least not if users are granted fine-tuned control over the compression features. According to Samplify Systems’ CEO, Allan Evans, the sacrifices on the lossy compression front are minimal–at least for those who are looking into their own APAX technology and their profiler technology which lets users set the accuracy to encoding levels. 

Further, he explains, that another fear is that such compression would require dramatic code tweaking. He says that with their technology, this provides a transparent layer which actually opens access to the data. 

According to Evans, lossy compression isn’t the risky business one might suspect–and it can lead to better performance when done properly. While this type of technology has wide play in other, non-HPC markets, a presentation from the company’s CTO at ISC ’13 last week spelled out just how viable extreme compression can be for a wide set of HPC applications, especially those with a large number of variables that can be run as standalone simulations against existing datasets.

In that presentation it was argued that “the most easily obtained benefit from lossy compression of climate datasets is a significant reduction in disk file size and a corresponding increase in disk bandwidth.” In terms of throughput, the CTO noted that their single-pass algorithm led to better cache usage and that overall, compared to the aforementioned compression methods, this offered a 1.6x improvement in compression and “better encoding for most climate variables due to its superior compression or data quality.”

To put this in better context, take a climate simulation, which can have close to 100 different state variables (pressure, temperature, etc), each of which is multi-dimensional (for example, different latitudes, altitudes, etc.). To add complexity, this simulation runs for a period of time, say between now and 2050. The simulation will provide interval-based snapshots while on the backend, the commonly-used HDF5 file format will containerize each of those variables for each snapshot–saving metadata so the information can be read back over quickly. The goal is to have a simulation where a user can pinpoint a particular place and date to understand exactly what the weather will be like. 

Samplify has uncovered a way to use lossy compression to reduce these HDF5 files without changing the solver application (as long as it’s already using HDF5, of course). The data compression is then applied in real-time first as the data is being saved or read back from the file–then the size is reduced via their plug-in to HDF5. The operator can then decide how much compression to apply in the face of what will be lost–in essence, to see how they can go–before the fidelity is at unacceptable levels. 

This means it’s possible for the scientist (versus a developer) to profile different variables–applying variable by variable compression that’s optimized for each variable type.

Outside of the compression angle, there is also the issue of performance. The APAX technology is Samplify’s numerical encoder that targets any integer or floating point data type and weighs in at 3:1 to 8:1 on the encoding rate scale. The key here is that it does so without having any direct impact on the actual application. Their APAX libraries can be snapped into an application’s core to let it work on data in memory, on disk or streaming across networks. It’s primed for Intel CPUs–Evans says the throughput is around 200 MB/sec per core.

While there appears no way to “try before you buy” directly, Samplify hopes this will be a valuable enough proposition for climatology and other researchers to plunk down an estimated $50,000 for a petabyte storage array. He notes that when priced against other solutions that take aim at the bottenecks in large-scale storage environments, this is on par, if not better. 

As it stands, the company has lined up some impressive use cases, including one of note at Lawrence Livermore National Laboratory that’s worth taking a look at.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This