Testing a New Algorithm for Cloud Computing

By Ian Armas Foster

June 27, 2013

Computing in the cloud brings about certain challenges as a result of having to deal with probability of network delays. As such, optimized job scheduling and related job completion estimation times take on a new importance. Researchers from the University of York took on a couple of algorithms designed to schedule cloud tasks and compared and contrasted them.

“It is almost inevitable for grids and clouds to experience significant variations in demand, which can lead to transient periods of overload where some jobs have to wait,” the researchers noted in an introduction to the problem. “Industrial users indicated their desire for response times of jobs to be proportionate to the jobs’ execution times.”

As such, this research was meant to investigate scheduling protocols as they relate to HPC applications and tasks running in a grid or cloud environment. The researchers evaluated three scheduling algorithms: Projected Schedule Length Ratio (P-SLR), which they developed in a previous article, along with Shortest Remaining Time First (SRTF), and Longest Remaining Time First (LRTF), a baseline just to show ineffectiveness considering the desire of users for wait time to approximate runtime.

The team was interested in ‘worst-case scenarios,’ or jobs whose runtimes were severely misestimated. As was the case with all the tests they ran, the LRTF model did not perform particularly well in this regard, as not only did it subject certain tasks to starvation, but also gave little allowance to initially small jobs that possessed runtime variation.

“The LRTF orderer, as expected, shows poorer worst-case responsiveness than any of the policies that do not consider execution time,” the researchers noted. “This is because it makes the smallest tasks starve, and these tasks are the ones whose SLR is most sensitive to waiting time.”

What that essentially means is users place a somewhat higher value on smaller tasks with regard to computations done in an environment that could be subject to network delays, such as the virtualized environments found in clouds or grids. That makes sense, as the cloud is used for experimental applications that expect to run multiple exploratory simulations in a relatively short amount of time.

 “In a realistic system, it is assumed that an estimate of execution time, albeit inaccurate, will be available from the user or from an automated job profiler. In simulation, however, the exact execution times are known in advance, so inaccuracies need to be introduced into the model.”

In this case, the job schedulers rely on an estimated job completion time. Those estimates are inaccurate enough that they any algorithm would need to take into account at least a baseline amount of intolerance. The hypothesis was that one of the algorithms between P-SLR and STRF would carry the day until a certain variation threshold was reached.

As it turned out, that threshold took hold at ten times the original estimated execution time. “The responsiveness performance of P-SLR was found to be robust below a certain threshold of execution time inaccuracy,” the researchers found. “This threshold was 10 times the original execution time of the task. Above this threshold, SRTF was able to provide better responsiveness.”

After jobs show a 1000% increase from estimated to actual response time, the SRTF ‘starved out’ some jobs. While this sounds less than ideal, those jobs were least reliant on wait time and low priority, meaning it was fine for them to be set aside. Perhaps such a starvation would have indicated a flaw in the job itself. “The divergence after 1000% is due to this guarantee because SRTF is letting the largest tasks starve. The largest tasks have SLRs which are least sensitive to waiting time, keeping the worst-case SLR fairly low.”

With that said, the SRTF starved out not just high variance jobs. P-SLR, according to the research, adds a guarantee that no job will be left behind, giving it the edge before that threshold of 1000% variance. “The difference between P-SLR and SRTF in this range is not statistically significant, which shows the strength of the P-SLR policy as it adds the guarantee of non-starvation.”

As it turns out, the important distinction between P-SLR and SRTF is that the structure of P-SLR does not allow for what the researchers called job starvation whereas SRTF will essentially forget jobs occasionally.

 “Users desire fair treatment of their jobs. An example of a particularly unfair situation is if some jobs experience starvation (unbounded waiting time) under overload.” In this respect, even though SRTF starved out some jobs, its levity was more pronounced. “P-SLR was not able to give the best fairness compared to SRTF once any significant estimation inaccuracies were present, because SRTF is better at keeping SLRs low for small tasks whose SLRs are more sensitive to longer waiting times.”

The P-SLR algorithm created by the researchers at the University of York is such that jobs won’t be put on hold indefinitely when subject to variables like network delays such as are apparent in cloud environments. However, if a proper method to estimate response time within 1000% is not found or utilized, P-SLR’s usefulness decreases.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This