Testing a New Algorithm for Cloud Computing

By Ian Armas Foster

June 27, 2013

Computing in the cloud brings about certain challenges as a result of having to deal with probability of network delays. As such, optimized job scheduling and related job completion estimation times take on a new importance. Researchers from the University of York took on a couple of algorithms designed to schedule cloud tasks and compared and contrasted them.

“It is almost inevitable for grids and clouds to experience significant variations in demand, which can lead to transient periods of overload where some jobs have to wait,” the researchers noted in an introduction to the problem. “Industrial users indicated their desire for response times of jobs to be proportionate to the jobs’ execution times.”

As such, this research was meant to investigate scheduling protocols as they relate to HPC applications and tasks running in a grid or cloud environment. The researchers evaluated three scheduling algorithms: Projected Schedule Length Ratio (P-SLR), which they developed in a previous article, along with Shortest Remaining Time First (SRTF), and Longest Remaining Time First (LRTF), a baseline just to show ineffectiveness considering the desire of users for wait time to approximate runtime.

The team was interested in ‘worst-case scenarios,’ or jobs whose runtimes were severely misestimated. As was the case with all the tests they ran, the LRTF model did not perform particularly well in this regard, as not only did it subject certain tasks to starvation, but also gave little allowance to initially small jobs that possessed runtime variation.

“The LRTF orderer, as expected, shows poorer worst-case responsiveness than any of the policies that do not consider execution time,” the researchers noted. “This is because it makes the smallest tasks starve, and these tasks are the ones whose SLR is most sensitive to waiting time.”

What that essentially means is users place a somewhat higher value on smaller tasks with regard to computations done in an environment that could be subject to network delays, such as the virtualized environments found in clouds or grids. That makes sense, as the cloud is used for experimental applications that expect to run multiple exploratory simulations in a relatively short amount of time.

 “In a realistic system, it is assumed that an estimate of execution time, albeit inaccurate, will be available from the user or from an automated job profiler. In simulation, however, the exact execution times are known in advance, so inaccuracies need to be introduced into the model.”

In this case, the job schedulers rely on an estimated job completion time. Those estimates are inaccurate enough that they any algorithm would need to take into account at least a baseline amount of intolerance. The hypothesis was that one of the algorithms between P-SLR and STRF would carry the day until a certain variation threshold was reached.

As it turned out, that threshold took hold at ten times the original estimated execution time. “The responsiveness performance of P-SLR was found to be robust below a certain threshold of execution time inaccuracy,” the researchers found. “This threshold was 10 times the original execution time of the task. Above this threshold, SRTF was able to provide better responsiveness.”

After jobs show a 1000% increase from estimated to actual response time, the SRTF ‘starved out’ some jobs. While this sounds less than ideal, those jobs were least reliant on wait time and low priority, meaning it was fine for them to be set aside. Perhaps such a starvation would have indicated a flaw in the job itself. “The divergence after 1000% is due to this guarantee because SRTF is letting the largest tasks starve. The largest tasks have SLRs which are least sensitive to waiting time, keeping the worst-case SLR fairly low.”

With that said, the SRTF starved out not just high variance jobs. P-SLR, according to the research, adds a guarantee that no job will be left behind, giving it the edge before that threshold of 1000% variance. “The difference between P-SLR and SRTF in this range is not statistically significant, which shows the strength of the P-SLR policy as it adds the guarantee of non-starvation.”

As it turns out, the important distinction between P-SLR and SRTF is that the structure of P-SLR does not allow for what the researchers called job starvation whereas SRTF will essentially forget jobs occasionally.

 “Users desire fair treatment of their jobs. An example of a particularly unfair situation is if some jobs experience starvation (unbounded waiting time) under overload.” In this respect, even though SRTF starved out some jobs, its levity was more pronounced. “P-SLR was not able to give the best fairness compared to SRTF once any significant estimation inaccuracies were present, because SRTF is better at keeping SLRs low for small tasks whose SLRs are more sensitive to longer waiting times.”

The P-SLR algorithm created by the researchers at the University of York is such that jobs won’t be put on hold indefinitely when subject to variables like network delays such as are apparent in cloud environments. However, if a proper method to estimate response time within 1000% is not found or utilized, P-SLR’s usefulness decreases.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Leading Solution Providers

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This