Testing a New Algorithm for Cloud Computing

By Ian Armas Foster

June 27, 2013

Computing in the cloud brings about certain challenges as a result of having to deal with probability of network delays. As such, optimized job scheduling and related job completion estimation times take on a new importance. Researchers from the University of York took on a couple of algorithms designed to schedule cloud tasks and compared and contrasted them.

“It is almost inevitable for grids and clouds to experience significant variations in demand, which can lead to transient periods of overload where some jobs have to wait,” the researchers noted in an introduction to the problem. “Industrial users indicated their desire for response times of jobs to be proportionate to the jobs’ execution times.”

As such, this research was meant to investigate scheduling protocols as they relate to HPC applications and tasks running in a grid or cloud environment. The researchers evaluated three scheduling algorithms: Projected Schedule Length Ratio (P-SLR), which they developed in a previous article, along with Shortest Remaining Time First (SRTF), and Longest Remaining Time First (LRTF), a baseline just to show ineffectiveness considering the desire of users for wait time to approximate runtime.

The team was interested in ‘worst-case scenarios,’ or jobs whose runtimes were severely misestimated. As was the case with all the tests they ran, the LRTF model did not perform particularly well in this regard, as not only did it subject certain tasks to starvation, but also gave little allowance to initially small jobs that possessed runtime variation.

“The LRTF orderer, as expected, shows poorer worst-case responsiveness than any of the policies that do not consider execution time,” the researchers noted. “This is because it makes the smallest tasks starve, and these tasks are the ones whose SLR is most sensitive to waiting time.”

What that essentially means is users place a somewhat higher value on smaller tasks with regard to computations done in an environment that could be subject to network delays, such as the virtualized environments found in clouds or grids. That makes sense, as the cloud is used for experimental applications that expect to run multiple exploratory simulations in a relatively short amount of time.

 “In a realistic system, it is assumed that an estimate of execution time, albeit inaccurate, will be available from the user or from an automated job profiler. In simulation, however, the exact execution times are known in advance, so inaccuracies need to be introduced into the model.”

In this case, the job schedulers rely on an estimated job completion time. Those estimates are inaccurate enough that they any algorithm would need to take into account at least a baseline amount of intolerance. The hypothesis was that one of the algorithms between P-SLR and STRF would carry the day until a certain variation threshold was reached.

As it turned out, that threshold took hold at ten times the original estimated execution time. “The responsiveness performance of P-SLR was found to be robust below a certain threshold of execution time inaccuracy,” the researchers found. “This threshold was 10 times the original execution time of the task. Above this threshold, SRTF was able to provide better responsiveness.”

After jobs show a 1000% increase from estimated to actual response time, the SRTF ‘starved out’ some jobs. While this sounds less than ideal, those jobs were least reliant on wait time and low priority, meaning it was fine for them to be set aside. Perhaps such a starvation would have indicated a flaw in the job itself. “The divergence after 1000% is due to this guarantee because SRTF is letting the largest tasks starve. The largest tasks have SLRs which are least sensitive to waiting time, keeping the worst-case SLR fairly low.”

With that said, the SRTF starved out not just high variance jobs. P-SLR, according to the research, adds a guarantee that no job will be left behind, giving it the edge before that threshold of 1000% variance. “The difference between P-SLR and SRTF in this range is not statistically significant, which shows the strength of the P-SLR policy as it adds the guarantee of non-starvation.”

As it turns out, the important distinction between P-SLR and SRTF is that the structure of P-SLR does not allow for what the researchers called job starvation whereas SRTF will essentially forget jobs occasionally.

 “Users desire fair treatment of their jobs. An example of a particularly unfair situation is if some jobs experience starvation (unbounded waiting time) under overload.” In this respect, even though SRTF starved out some jobs, its levity was more pronounced. “P-SLR was not able to give the best fairness compared to SRTF once any significant estimation inaccuracies were present, because SRTF is better at keeping SLRs low for small tasks whose SLRs are more sensitive to longer waiting times.”

The P-SLR algorithm created by the researchers at the University of York is such that jobs won’t be put on hold indefinitely when subject to variables like network delays such as are apparent in cloud environments. However, if a proper method to estimate response time within 1000% is not found or utilized, P-SLR’s usefulness decreases.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This