Testing a New Algorithm for Cloud Computing

By Ian Armas Foster

June 27, 2013

Computing in the cloud brings about certain challenges as a result of having to deal with probability of network delays. As such, optimized job scheduling and related job completion estimation times take on a new importance. Researchers from the University of York took on a couple of algorithms designed to schedule cloud tasks and compared and contrasted them.

“It is almost inevitable for grids and clouds to experience significant variations in demand, which can lead to transient periods of overload where some jobs have to wait,” the researchers noted in an introduction to the problem. “Industrial users indicated their desire for response times of jobs to be proportionate to the jobs’ execution times.”

As such, this research was meant to investigate scheduling protocols as they relate to HPC applications and tasks running in a grid or cloud environment. The researchers evaluated three scheduling algorithms: Projected Schedule Length Ratio (P-SLR), which they developed in a previous article, along with Shortest Remaining Time First (SRTF), and Longest Remaining Time First (LRTF), a baseline just to show ineffectiveness considering the desire of users for wait time to approximate runtime.

The team was interested in ‘worst-case scenarios,’ or jobs whose runtimes were severely misestimated. As was the case with all the tests they ran, the LRTF model did not perform particularly well in this regard, as not only did it subject certain tasks to starvation, but also gave little allowance to initially small jobs that possessed runtime variation.

“The LRTF orderer, as expected, shows poorer worst-case responsiveness than any of the policies that do not consider execution time,” the researchers noted. “This is because it makes the smallest tasks starve, and these tasks are the ones whose SLR is most sensitive to waiting time.”

What that essentially means is users place a somewhat higher value on smaller tasks with regard to computations done in an environment that could be subject to network delays, such as the virtualized environments found in clouds or grids. That makes sense, as the cloud is used for experimental applications that expect to run multiple exploratory simulations in a relatively short amount of time.

 “In a realistic system, it is assumed that an estimate of execution time, albeit inaccurate, will be available from the user or from an automated job profiler. In simulation, however, the exact execution times are known in advance, so inaccuracies need to be introduced into the model.”

In this case, the job schedulers rely on an estimated job completion time. Those estimates are inaccurate enough that they any algorithm would need to take into account at least a baseline amount of intolerance. The hypothesis was that one of the algorithms between P-SLR and STRF would carry the day until a certain variation threshold was reached.

As it turned out, that threshold took hold at ten times the original estimated execution time. “The responsiveness performance of P-SLR was found to be robust below a certain threshold of execution time inaccuracy,” the researchers found. “This threshold was 10 times the original execution time of the task. Above this threshold, SRTF was able to provide better responsiveness.”

After jobs show a 1000% increase from estimated to actual response time, the SRTF ‘starved out’ some jobs. While this sounds less than ideal, those jobs were least reliant on wait time and low priority, meaning it was fine for them to be set aside. Perhaps such a starvation would have indicated a flaw in the job itself. “The divergence after 1000% is due to this guarantee because SRTF is letting the largest tasks starve. The largest tasks have SLRs which are least sensitive to waiting time, keeping the worst-case SLR fairly low.”

With that said, the SRTF starved out not just high variance jobs. P-SLR, according to the research, adds a guarantee that no job will be left behind, giving it the edge before that threshold of 1000% variance. “The difference between P-SLR and SRTF in this range is not statistically significant, which shows the strength of the P-SLR policy as it adds the guarantee of non-starvation.”

As it turns out, the important distinction between P-SLR and SRTF is that the structure of P-SLR does not allow for what the researchers called job starvation whereas SRTF will essentially forget jobs occasionally.

 “Users desire fair treatment of their jobs. An example of a particularly unfair situation is if some jobs experience starvation (unbounded waiting time) under overload.” In this respect, even though SRTF starved out some jobs, its levity was more pronounced. “P-SLR was not able to give the best fairness compared to SRTF once any significant estimation inaccuracies were present, because SRTF is better at keeping SLRs low for small tasks whose SLRs are more sensitive to longer waiting times.”

The P-SLR algorithm created by the researchers at the University of York is such that jobs won’t be put on hold indefinitely when subject to variables like network delays such as are apparent in cloud environments. However, if a proper method to estimate response time within 1000% is not found or utilized, P-SLR’s usefulness decreases.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI End Game: The Automation of All Work

June 29, 2017

Last week we reported from ISC on an emerging type of high performance system architecture that integrates HPC and HPA (High Performance Analytics) and incorporates, at its center, exabyte-scale memory capacity, surround Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms based on floating point (FP) numbers. Algorithms can definit Read more…

By James Reinders

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

AI End Game: The Automation of All Work

June 29, 2017

Last week we reported from ISC on an emerging type of high performance system architecture that integrates HPC and HPA (High Performance Analytics) and incorpor Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This