Research Roundup: Expanding the Science Cloud

By Nicole Hemsoth

July 7, 2013

This week’s hand-picked assortment focuses on advancements made to improve the performance of scientific applications in the cloud, touching on issues such as fault tolerance, workflow management, and 2D and 3D cellular simulation. 

Cloud Service Fault Tolerance

Cloud computing presents a unique opportunity for science and engineering with benefits compared to traditional high-performance computing, especially for smaller compute jobs and entry-level users to parallel computing. However, according to researchers from RMIT University in Melbourne, doubts remain for production high-performance computing in the cloud, the so-called science cloud, as predictable performance, reliability and therefore costs remain elusive for many applications.

Their paper used parameterized architectural patterns to assist with fault tolerance and cost predictions for science clouds, in which a single job typically holds many virtual machines for a long time, communication can involve massive data movements, and buffered streams allow parallel processing to proceed while data transfers are still incomplete.

They utilized predictive models, simulation and actual runs to estimate run times with acceptable accuracy for two of the most common architectural patterns for data-intensive scientific computing: MapReduce and Combinational Logic. Run times were fundamental to understand fee-for-service costs of clouds.

These are typically charged by the hour and the number of compute nodes or cores used. The researchers evaluated their models using realistic cloud experiments from collaborative physics research projects and showed that proactive and reactive fault tolerance is manageable, predictable and composable, in principle, especially at the architectural level.

Next–Cloud Computing and Cellular Automata Simulation->

Cloud Computing and Cellular Automata Simulation

Cellular automata can be applied to solve several problems in a variety of areas, such as biology, chemistry, medicine, physics, astronomy, economics, and urban planning.

The automata are defined by simple rules that give rise to behavior of great complexity running on very large matrices. 2D applications may require more than 106 × 106 matrix cells, which are usually beyond the computational capacity of local clusters of computers.

A paper from Brazilian researchers out of Pontifical Catholic University of Rio de Janeiro and the Federal University of Espirito Santo presented a solution for traditional cellular automata simulations. They proposed a scalable software framework, based on cloud computing technology, which is capable of dealing with very large matrices.

The use of the framework facilitated the instrumentation of simulation experiments by non-computer experts, as it removed the burden related to the configuration of MapReduce jobs, so that researchers need only be concerned with their simulation algorithms.

Next–Managing Computational Workflows in the Cloud->

Managing Computational Workflows in the Cloud

Scientists today are exploring the use of new tools and computing platforms to do their science. They are using workflow management tools to describe and manage complex applications and are evaluating the features and performance of clouds to see if they meet their computational needs, argue researchers out of the USC Information Sciences Institute.

Although today, hosting is limited to providing virtual resources and simple services, one can imagine that in the future entire scientific analyses will be hosted for the user. The latter would specify the desired analysis, the timeframe of the computation, and the available budget.

Hosted services would then deliver the desired results within the provided constraints. Their paper described current work on managing scientific applications on the cloud, focusing on workflow management and related data management issues.

Frequently, applications are not represented by single workflows but rather as sets of related workflow ensembles. Thus, hosted services need to be able to manage entire workflow ensembles, evaluating tradeoffs between completing as many high-value ensemble members as possible and delivering results within a certain time and budget.

Their paper gives an overview of existing hosted science issues, presents the current state of the art on resource provisioning that can support it, as well as outlines future research directions in this field.

Next–Optimizing Data Analysis in the Cloud->

Optimizing Data Analysis in the Cloud

A research team out of Duke University presented Cumulon, a system designed to help users rapidly develop and intelligently deploy matrix-based big-data analysis programs in the cloud.

Cumulon, according to the research, features a flexible execution model and new operators especially suited for such workloads. In the paper, they show how to implement Cumulon on top of Hadoop/HDFS while avoiding limitations of MapReduce, and demonstrate Cumulon’s performance advantages over existing Hadoop-based systems for statistical data analysis.

To support intelligent deployment in the cloud according to time/budget constraints, Cumulon goes beyond database style optimization to make choices automatically on not only physical operators and their parameters, but also hardware provisioning and configuration settings, according to the Duke researchers.

 They applied a suite of benchmarking, simulation, modeling, and search techniques to support effective cost-based optimization over this rich space of deployment plans.

Next–Business Integration as a Service: The Case Study of the University of Southampton->

Business Integration as a Service: The Case Study of the University of Southampton

Finally, a paper out of the University of Southampton presented Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. They illustrated this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton.

The case study demonstrated the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques were used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS.

Computational results were presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirmed the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed.

Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This