Research Roundup: Expanding the Science Cloud

By Nicole Hemsoth

July 7, 2013

This week’s hand-picked assortment focuses on advancements made to improve the performance of scientific applications in the cloud, touching on issues such as fault tolerance, workflow management, and 2D and 3D cellular simulation. 

Cloud Service Fault Tolerance

Cloud computing presents a unique opportunity for science and engineering with benefits compared to traditional high-performance computing, especially for smaller compute jobs and entry-level users to parallel computing. However, according to researchers from RMIT University in Melbourne, doubts remain for production high-performance computing in the cloud, the so-called science cloud, as predictable performance, reliability and therefore costs remain elusive for many applications.

Their paper used parameterized architectural patterns to assist with fault tolerance and cost predictions for science clouds, in which a single job typically holds many virtual machines for a long time, communication can involve massive data movements, and buffered streams allow parallel processing to proceed while data transfers are still incomplete.

They utilized predictive models, simulation and actual runs to estimate run times with acceptable accuracy for two of the most common architectural patterns for data-intensive scientific computing: MapReduce and Combinational Logic. Run times were fundamental to understand fee-for-service costs of clouds.

These are typically charged by the hour and the number of compute nodes or cores used. The researchers evaluated their models using realistic cloud experiments from collaborative physics research projects and showed that proactive and reactive fault tolerance is manageable, predictable and composable, in principle, especially at the architectural level.

Next–Cloud Computing and Cellular Automata Simulation->

Cloud Computing and Cellular Automata Simulation

Cellular automata can be applied to solve several problems in a variety of areas, such as biology, chemistry, medicine, physics, astronomy, economics, and urban planning.

The automata are defined by simple rules that give rise to behavior of great complexity running on very large matrices. 2D applications may require more than 106 × 106 matrix cells, which are usually beyond the computational capacity of local clusters of computers.

A paper from Brazilian researchers out of Pontifical Catholic University of Rio de Janeiro and the Federal University of Espirito Santo presented a solution for traditional cellular automata simulations. They proposed a scalable software framework, based on cloud computing technology, which is capable of dealing with very large matrices.

The use of the framework facilitated the instrumentation of simulation experiments by non-computer experts, as it removed the burden related to the configuration of MapReduce jobs, so that researchers need only be concerned with their simulation algorithms.

Next–Managing Computational Workflows in the Cloud->

Managing Computational Workflows in the Cloud

Scientists today are exploring the use of new tools and computing platforms to do their science. They are using workflow management tools to describe and manage complex applications and are evaluating the features and performance of clouds to see if they meet their computational needs, argue researchers out of the USC Information Sciences Institute.

Although today, hosting is limited to providing virtual resources and simple services, one can imagine that in the future entire scientific analyses will be hosted for the user. The latter would specify the desired analysis, the timeframe of the computation, and the available budget.

Hosted services would then deliver the desired results within the provided constraints. Their paper described current work on managing scientific applications on the cloud, focusing on workflow management and related data management issues.

Frequently, applications are not represented by single workflows but rather as sets of related workflow ensembles. Thus, hosted services need to be able to manage entire workflow ensembles, evaluating tradeoffs between completing as many high-value ensemble members as possible and delivering results within a certain time and budget.

Their paper gives an overview of existing hosted science issues, presents the current state of the art on resource provisioning that can support it, as well as outlines future research directions in this field.

Next–Optimizing Data Analysis in the Cloud->

Optimizing Data Analysis in the Cloud

A research team out of Duke University presented Cumulon, a system designed to help users rapidly develop and intelligently deploy matrix-based big-data analysis programs in the cloud.

Cumulon, according to the research, features a flexible execution model and new operators especially suited for such workloads. In the paper, they show how to implement Cumulon on top of Hadoop/HDFS while avoiding limitations of MapReduce, and demonstrate Cumulon’s performance advantages over existing Hadoop-based systems for statistical data analysis.

To support intelligent deployment in the cloud according to time/budget constraints, Cumulon goes beyond database style optimization to make choices automatically on not only physical operators and their parameters, but also hardware provisioning and configuration settings, according to the Duke researchers.

 They applied a suite of benchmarking, simulation, modeling, and search techniques to support effective cost-based optimization over this rich space of deployment plans.

Next–Business Integration as a Service: The Case Study of the University of Southampton->

Business Integration as a Service: The Case Study of the University of Southampton

Finally, a paper out of the University of Southampton presented Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. They illustrated this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton.

The case study demonstrated the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques were used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS.

Computational results were presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirmed the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed.

Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This