Research Roundup: Expanding the Science Cloud

By Nicole Hemsoth

July 7, 2013

This week’s hand-picked assortment focuses on advancements made to improve the performance of scientific applications in the cloud, touching on issues such as fault tolerance, workflow management, and 2D and 3D cellular simulation. 

Cloud Service Fault Tolerance

Cloud computing presents a unique opportunity for science and engineering with benefits compared to traditional high-performance computing, especially for smaller compute jobs and entry-level users to parallel computing. However, according to researchers from RMIT University in Melbourne, doubts remain for production high-performance computing in the cloud, the so-called science cloud, as predictable performance, reliability and therefore costs remain elusive for many applications.

Their paper used parameterized architectural patterns to assist with fault tolerance and cost predictions for science clouds, in which a single job typically holds many virtual machines for a long time, communication can involve massive data movements, and buffered streams allow parallel processing to proceed while data transfers are still incomplete.

They utilized predictive models, simulation and actual runs to estimate run times with acceptable accuracy for two of the most common architectural patterns for data-intensive scientific computing: MapReduce and Combinational Logic. Run times were fundamental to understand fee-for-service costs of clouds.

These are typically charged by the hour and the number of compute nodes or cores used. The researchers evaluated their models using realistic cloud experiments from collaborative physics research projects and showed that proactive and reactive fault tolerance is manageable, predictable and composable, in principle, especially at the architectural level.

Next–Cloud Computing and Cellular Automata Simulation->

Cloud Computing and Cellular Automata Simulation

Cellular automata can be applied to solve several problems in a variety of areas, such as biology, chemistry, medicine, physics, astronomy, economics, and urban planning.

The automata are defined by simple rules that give rise to behavior of great complexity running on very large matrices. 2D applications may require more than 106 × 106 matrix cells, which are usually beyond the computational capacity of local clusters of computers.

A paper from Brazilian researchers out of Pontifical Catholic University of Rio de Janeiro and the Federal University of Espirito Santo presented a solution for traditional cellular automata simulations. They proposed a scalable software framework, based on cloud computing technology, which is capable of dealing with very large matrices.

The use of the framework facilitated the instrumentation of simulation experiments by non-computer experts, as it removed the burden related to the configuration of MapReduce jobs, so that researchers need only be concerned with their simulation algorithms.

Next–Managing Computational Workflows in the Cloud->

Managing Computational Workflows in the Cloud

Scientists today are exploring the use of new tools and computing platforms to do their science. They are using workflow management tools to describe and manage complex applications and are evaluating the features and performance of clouds to see if they meet their computational needs, argue researchers out of the USC Information Sciences Institute.

Although today, hosting is limited to providing virtual resources and simple services, one can imagine that in the future entire scientific analyses will be hosted for the user. The latter would specify the desired analysis, the timeframe of the computation, and the available budget.

Hosted services would then deliver the desired results within the provided constraints. Their paper described current work on managing scientific applications on the cloud, focusing on workflow management and related data management issues.

Frequently, applications are not represented by single workflows but rather as sets of related workflow ensembles. Thus, hosted services need to be able to manage entire workflow ensembles, evaluating tradeoffs between completing as many high-value ensemble members as possible and delivering results within a certain time and budget.

Their paper gives an overview of existing hosted science issues, presents the current state of the art on resource provisioning that can support it, as well as outlines future research directions in this field.

Next–Optimizing Data Analysis in the Cloud->

Optimizing Data Analysis in the Cloud

A research team out of Duke University presented Cumulon, a system designed to help users rapidly develop and intelligently deploy matrix-based big-data analysis programs in the cloud.

Cumulon, according to the research, features a flexible execution model and new operators especially suited for such workloads. In the paper, they show how to implement Cumulon on top of Hadoop/HDFS while avoiding limitations of MapReduce, and demonstrate Cumulon’s performance advantages over existing Hadoop-based systems for statistical data analysis.

To support intelligent deployment in the cloud according to time/budget constraints, Cumulon goes beyond database style optimization to make choices automatically on not only physical operators and their parameters, but also hardware provisioning and configuration settings, according to the Duke researchers.

 They applied a suite of benchmarking, simulation, modeling, and search techniques to support effective cost-based optimization over this rich space of deployment plans.

Next–Business Integration as a Service: The Case Study of the University of Southampton->

Business Integration as a Service: The Case Study of the University of Southampton

Finally, a paper out of the University of Southampton presented Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. They illustrated this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton.

The case study demonstrated the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques were used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS.

Computational results were presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirmed the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed.

Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This