Cycle Computing and the HPC Experiment

By Ian Armas Foster

July 15, 2013

With hardware advancing at a relatively stable (if still exponential) rate and datasets increasing at a much higher rate, parallelism is a main tenet of high performance computing today. That parallelism is difficult to attain in a cloud environment, as latencies there are typically higher, thus slowing performance.

Three weeks ago, Jason Stowe, CEO of Cycle Computing, spoke with HPC in the Cloud about their work in renting large clusters of Amazon HPC instances for companies looking for a short but powerful burst of that parallelized computing power. The focus was on how they aided Schrodinger in winning a Bio-IT Best Practices award with their intensive yet relatively inexpensive protein calculations.

That conversation took place on the heels of a presentation done with Wolfgang Gentzsch and Burak Yenier in association with the HPC Experiment, where Stowe went more into detail about the additional use cases in which Cycle Computing has facilitated HPC experimentation in the cloud. Gentzsch and Yenier also went on to provide an update on the HPC experiment, the fourth round of which kicks off this week.

The problem with in-house HPC equipment, according to Stowe, lies in a lack of stability in resource requirement. Oftentimes the HPC cluster goes under-utilized, meaning relatively expensive machinery is idling on valuable floor space. On the other end of the spectrum, the servers may not fulfill the peak needs of the institution.

“The clusters are too small when you need them most…you generally wish it was several times larger than it actually is,” Stowe said of companies with in-house resources when they face the peak of their intermittent computing needs schedule.

The challenge was based on the knowledge that, according to Stowe, that some top ten pharmaceutical companies can run approximately 341,700 hours of computing against a cancer target every year.

“We essentially were able to run very large sets of compounds an order of magnitude over what they normally would have been able to provision against different cancer affiliated proteins,” he said.

As Stowe noted, their work was in drug design and running simulations on how to either stimulate or halt protein activity. “What you’re trying to do,” he said, “is knock small molecules that lock so that they either inhibit or enhance, depending on the nature of the protein and the disease pathway, its function as a protein.”

As mentioned in last month’s article, through their Utility HPC platform, Cycle Computing aims to reduce computing time, resulting in lower costs for the clients.

Of course, while these tests are intriguing and the protein simulations are useful, what really showcases their worth is if such simulations result in the development of cancer drugs that otherwise would not have been possible. According to Stowe, Novartis proved that usefulness.

Two years ago, Novartis ran a 30,000-core Intel Xeon system setup on AWS via Cycle. They announced earlier this year that as a result of those computations, they found three compounds of interest from a drug target perspective.

These things often take time to verify as the drug trial process, which often involves clinical trials with cancerous patients, cannot yet be simulated via a supercomputing cluster. “Part of the enemy is time,” Stowe said. “We’ve run these workloads for significant clients in the past like Novartis and Schrodinger, but oftentimes you don’t know the impact of them until many years have passed.”

One of the advantages here is the ability to access a relatively large cluster for a short amount of time, thus accruing significantly less computing expense. For companies who look to run those 11 hour bursts, it would seem that they may need to prepare their applications ahead of time.

However, as evidenced by the other use cases Stowe referenced, namely CAD/CAM from an engineering perspective and genomics, there exist companies who make consistent use of a Cycle-AWS cluster over the course of three months.

“They had about 1200 of these 576-core jobs that they needed to run, each of which had its own 100-GB dataset,” Stowe said of a company who operated ten clusters concurrently to accomplish those 576-core jobs. Stowe estimated that such a physical system would take nine months to build, whereas that Cycle-facilitated process only ran three months. In another example, Cycle assisted in completing a million compute hours in one week for under $20,000 for a genomics company whose problem was shown below.

As evidenced by Stowe’s use cases and as noted by Gentzsch in the presentation, high performance applications run in the cloud serve a greater use to mid-sized institutions with neither the time nor the funds to purchase and implement an HPC cluster on their own. Those mid-sized institutions constitute a good portion of the 475 participants and 85 ‘teams’ that have participated in the HPC Experiment over its first three rounds.

Round four begins this month, and a more in-depth update will be provided within the next month in an article from Gentzsch. The full presentation from Stowe, Gentzsch, and Yenier can be found below.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This