Comprehensively Evaluating HPC Cloud Cost Benefits

By Ian Armas Foster

July 30, 2013

HP Labs partnered with the University of Illinois at Champaign-Urbana to comprehensively evaluate the feasibility of running high performance applications in the cloud. The research set out to answer many questions, including wondering how HPC applications fare in the cloud versus supercomputers (they used the Ranger and Taub machines for those tests), which applications were best suited for cloud deployment, and what the cost benefits were for certain organizations in maintaining their high performance needs in a cloud.

Below is a grid of all the platforms they used in testing their various applications. As one can see, the Ranger and Taub systems are there along with public and private cloud instances.

It is important to note the approach the research team took with setting up their cloud systems. While they could have built a dedicated instance that would perform closer to supercomputing standards, they figured that such an instance would be unlikely in the scenario of a mid-sized enterprise or startup looking to purchase on-demand HPC resources.

With that said, they still took steps to optimize the performance. “To get maximum performance from virtual machines, we avoided any sharing of physical cores between virtual cores. In case of cloud, most common deployment of multi-tenancy is not sharing individual physical cores, but rather done at the node, or even coarser level. This is even more true with increasing number of cores per server.”

They tested those cloud systems and the control supercomputers on a variety of applications, including Jacobi2D, used for scientific simulation and image processing, NAMD, a molecular dynamics application, ChaNGa, used for cosmology simulation, and the NQueens problem among others.

The graphs above show how well the various machines’ performance scaled relative to the various applications. The applications that reportedly found trouble scaling were those that were communication intensive. “IS is a communication intensive benchmark and involves data reshuffling and permutation operations for sorting. Sweep3Dalso exhibits poor weak scaling after 4–8 cores on cloud. Other communication intensive applications such as LU, NAMD and ChaNGa also stop scaling on private cloud around 32 cores,” the report noted.

In all instances except for the public cloud, the EP, Jacobi2D and NQueens applications scaled up to 256 cores, while the public cloud imposed performance penalties once more than four cores were used.

Once the performance drop off was established for clouds, a fact that was altogether not surprising, the next task was to determine exactly what kind of penalty was suffered, such that they could relate that to the cost of apportioning those systems in the process of determining if cloud is indeed a cost effective means of securing HPC resources.

To quantify the amount of variability on cloud and compare it with a supercomputer, we calculated the coefficient of variation (standard deviation/mean) for execution time of ChaNGa across 5 executions,” the report stated. According to the research team, the amount of variability increases as they scale up as a result of decrease in granularity. “For the case of 256 cores at public cloud, standard deviation is equal to half the mean, implying that on average, values are spread out between 0.5x mean and 1.5x mean resulting in low predictability of performance across runs. In contrast, private cloud shows less variability.”

Overall, latency and bandwidth on cloud ended up coming in a couple of orders of magnitude below that of their Ranger and Taub machines, as shown in the logarithmic graphs below.

These bandwidth and latency issues make it difficult on those aforementioned communication intensive applications, where obviously contact among cores and nodes to complete a problem is key.

Again, the researchers note that a dedicated public cloud instance would solve a great deal of these problems. However, such an instance would likely cost more and therefore become less feasible for the mid-sized companies and startups that would utilize it. The multi-tenancy cloud setup renders many high performance applications untenable. “The performance of many HPC applications is very sensitive to the interconnect, as we showed in our experimental evaluation. In particular low latency requirements are typical for the HPC applications that incur substantial communication. This is in contrast with the commodity Ethernet network (1Gbps today moving to 10Gbps) typically deployed in cloud infrastructure,” the report noted.

With that said, it is still prudent for those smallmedium companies to enlist cloud-based HPC services, as the cost analysis shows below.

Even the communication intensive applications work well up to a certain amount of cores, an amount of cores unlikely to be exceeded by a medium institution. “The ability to take advantage of a large variety of different architectures (with different interconnects, processor types, memory sizes, etc.) can result in better utilization at global scale, compared to the limited choices available in any individual organization,” the report argued. Below is a sample of what such an architecture that relies on just four-core cloud-based machines would look like.

The report does go on to say that dedicated instances would be advantageous to large institutions looking for burst capacity, a concept that has been discussed here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This