Consolidating HPC’s Gains

By Gary Johnson

August 13, 2013

Despite phenomenal progress in HPC over a sustained period of decades, a few issues limiting its effectiveness and acceptance remain.  Prominent among these are the repeatability, transportability, and openness of HPC applications.  As we prepare to move HPC to the exascale level, we should take the time and effort to consolidate HPC’s gains and deal with these residual issues from the early days of computational science.  Only then will we be ready to reap the benefits of more powerful HPC tools.

HPC Tools

Nearly fifty years ago, in 1964, the first computer generally acknowledged as a supercomputer – the CDC 6600 – was introduced.  At that time, there was no Linpack Benchmark or Top500 List but, by the measures in use then, it was able to sustain a performance level of about 500 Kiloflops.

In 1970, ARPAnet, the progenitor of the Internet came along.  A few years later, in 1973, Ethernet was invented.  In 1985, NSFnet was created and in the early 1990s it morphed into the Internet.  In 1990 the World Wide Web was born and in 1993 it was made visual by the release of the Mosaic web browser.  Also in 1993, the Top500 List was introduced and its top computer was a Thinking Machines CM-5, clocked at just under 60 Gigaflops.

In summary, HPC has existed for at least half a century and, in terms of HPC tools, we’ve had fairly capable supercomputers and networking for about 20 years.

HPC Applications

The concept of computational science came to public light no later than 1989, when our late friend and colleague, Ken Wilson, published his well-known Grand Challenges to Computational Science paper (unfortunately, it’s locked away behind a paywall).  So, both the HPC tools and the computational science concept for HPC applications gelled into something pretty close to their contemporary form a couple of decades ago. 

Originally, computational science was met with a fair amount of skepticism.  It was seen by some as just a collection of stunts, producing little more than pretty pictures – not the real stuff of science.  It was seen as lacking the rigor necessary to be on par with theory and experiment.  Computational science results were often criticized as one-off demos of unproven concepts. 

So, how effectively and convincingly have we been using HPC?

Repeatability, Transportability, Openness

Both theory and experiment share a few key attributes:

Repeatability (Recomputability)

 A result obtained once can be repeated arbitrarily many times, given the same assumptions (for a theory) or conditions (for an experiment).

Transportability (Reuse)

Results are not dependent on any particular theorist, experimentalist or specific apparatus.  They are transportable to other people and places – transcending any particular instance.

Openness

Results are open.  Theorists publish their theories and the corresponding proofs (if possible) or conjectures.  Experimentalists describe the conditions of their experiments and the details of their equipment and procedures.  These steps are taken to ensure the credibility of results by enabling their repeatability and transportability. 

HPC applications, as science, should also share these attributes – in order to rise above the early criticisms of computational science, and to be effective and convincing.

Current Status

Twenty years into the “modern era” of HPC applications, how are we doing?  Clearly, we’ve made our applications bigger and more complex.  Through improvements in the speed of both algorithms and hardware, our applications execute faster.  The concepts of Verification and Validation (V&V) and Uncertainty Quantification (UQ) for scientific codes have taken root – but perhaps not yet fully blossomed in general HPC practice. 

However, despite the laudable efforts of many of our HPC colleagues to solidify the standing of our field, significant issues with repeatability, transportability, and openness remain.  Here are a few recent developments:

Repeatability (Recomputability)

Ian Gent, Professor of Computer Science at the University of St Andrews, has recently published something he calls The Recomputation Manifesto.  It is described in a post of his at the Software Sustainability Institute.  The Manifesto contains six points (emphasis mine):

  1. Computational experiments should be recomputable for all time
  2. Recomputation of recomputable experiments should be very easy
  3. It should be easier to make experiments recomputable than not to
  4. Tools and repositories can help recomputation become standard
  5. The only way to ensure recomputability is to provide virtual machines
  6. Runtime performance is a secondary issue

The Manifesto is based on Gent’s views that:

The current state of experimental reproducibility in computer science is lamentable. The result is inevitable: experimental results enter the literature which are just wrong. I don’t mean that the results don’t generalise. I mean that an algorithm which was claimed to do something just does not do that thing: for example, if the original implementation was bugged and was in fact a different algorithm. I suspect this problem is common, and I know for certain that it has happened. Here’s an example from my own research area, discovered by my friend and tenacious pursuer of replication Patrick Prosser.

The full text of the Manifesto is available on arXiv.  Suffice it to say that Professor Gent’s concerns are well founded and extend beyond computer science to include HPC applications. 

Transportability (Reuse)

A group of investigators from Korea and the US have recently published a paper entitled An Evaluation of the Software System Dependency of a Global Atmospheric Model.  The abstract reads as follows (emphasis mine):

This study presents the dependency of the simulation results from a global atmospheric numerical model on machines with different hardware and software systems. The global model program (GMP) of the Global/Regional Integrated Model system (GRIMs) is tested on 10 different computer systems having different central processing unit (CPU) architectures or compilers. There exist differences in the results for different compilers, parallel libraries, and optimization levels, primarily due to the treatment of rounding errors by the different software systems. The system dependency, which is the standard deviation of the 500-hPa geopotential height averaged over the globe, increases with time. However, its fractional tendency, which is the change of the standard deviation relative to the value itself, remains nearly zero with time. In a seasonal prediction framework, the ensemble spread due to the differences in software system is comparable to the ensemble spread due to the differences in initial conditions that is used for the traditional ensemble forecasting.

The full paper is behind an American Meteorological Society paywall.  Based on my interpretation of the abstract, transportability (or reuse) is a non-trivial issue for this HPC application.  My guess is that this is not an isolated case.

Openness

A group of nine astrophysicists recently published a paper in arXiv entitled Practices in source code sharing in astrophysics.  In it, they write (emphasis mine):

While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make the computational astronomy methods more available to other researchers who wish to apply them to their data.

So, openness clearly also remains an issue for HPC applications. 

Note further that it’s not just the codes and their related parameters that should be publicly available – but also the scientific publications reporting on them.  If you’ve been keeping track, you’ve noted that two papers mentioned in this article are behind paywalls – Ken Wilson’s seminal paper on Grand Challenges to Computational Science (24 years later!) and the recent one on the Global Atmospheric Model (despite its obvious public policy implications).  The good news is that places like arXiv exist and the other publications mentioned here are out in the open.

Consolidating HPC’s Gains

HPC has come a long way.  Our tools have improved greatly.  For example, today’s fastest machine, China’s Tianhe-2, has been clocked at just under 34 Petaflops.  So roughly speaking, HPC performance has improved by a factor of about 600,000 in the past 20 years (and 68 billion in the past 50 years).  Current plans are to have exascale computers in place by the beginning of the next decade.

The rapid pace of improvement in HPC tools and their increasingly broader adoption by industry puts a lot of pressure on HPC applications – and on the financial resources available to support the whole HPC enterprise.  Certainly, HPC applications have grown in scale and become more complex and inclusive of more physical phenomena.  However, arguably, most petascale applications are still done in the old “hero mode” from the early days of computational science.  Most practitioners compute at the terascale – not the petascale – and only limited resources have been made available to help them catch up before the bar is raised to exascale.

So, while we’re working toward exascale HPC tools, perhaps we should consolidate the HPC applications gains we’ve made thus far – so that we’ll be ready to embrace exascale and exploit it fully.  Even if financial resources are scarce, this should be a high priority. 

In addition to bringing more HPC applications – and people – up to the petascale level, we should address the lingering issues of repeatability, transportability, openness discussed above.  If forced to pick one of these three to focus on, openness is probably the key.

If we publish openly and release the related source codes, repeatability and transportability should be solvable problems.  The venues for open publication already exist and are being used by some communities.  To complete this part of openness, just don’t allow your publications to be placed behind paywalls.  There is no good reason that scientific work (probably funded by public money) should be behind paywalls.  Once that bullet has been bitten, source codes must inevitably follow.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This