Consolidating HPC’s Gains

By Gary Johnson

August 13, 2013

Despite phenomenal progress in HPC over a sustained period of decades, a few issues limiting its effectiveness and acceptance remain.  Prominent among these are the repeatability, transportability, and openness of HPC applications.  As we prepare to move HPC to the exascale level, we should take the time and effort to consolidate HPC’s gains and deal with these residual issues from the early days of computational science.  Only then will we be ready to reap the benefits of more powerful HPC tools.

HPC Tools

Nearly fifty years ago, in 1964, the first computer generally acknowledged as a supercomputer – the CDC 6600 – was introduced.  At that time, there was no Linpack Benchmark or Top500 List but, by the measures in use then, it was able to sustain a performance level of about 500 Kiloflops.

In 1970, ARPAnet, the progenitor of the Internet came along.  A few years later, in 1973, Ethernet was invented.  In 1985, NSFnet was created and in the early 1990s it morphed into the Internet.  In 1990 the World Wide Web was born and in 1993 it was made visual by the release of the Mosaic web browser.  Also in 1993, the Top500 List was introduced and its top computer was a Thinking Machines CM-5, clocked at just under 60 Gigaflops.

In summary, HPC has existed for at least half a century and, in terms of HPC tools, we’ve had fairly capable supercomputers and networking for about 20 years.

HPC Applications

The concept of computational science came to public light no later than 1989, when our late friend and colleague, Ken Wilson, published his well-known Grand Challenges to Computational Science paper (unfortunately, it’s locked away behind a paywall).  So, both the HPC tools and the computational science concept for HPC applications gelled into something pretty close to their contemporary form a couple of decades ago. 

Originally, computational science was met with a fair amount of skepticism.  It was seen by some as just a collection of stunts, producing little more than pretty pictures – not the real stuff of science.  It was seen as lacking the rigor necessary to be on par with theory and experiment.  Computational science results were often criticized as one-off demos of unproven concepts. 

So, how effectively and convincingly have we been using HPC?

Repeatability, Transportability, Openness

Both theory and experiment share a few key attributes:

Repeatability (Recomputability)

 A result obtained once can be repeated arbitrarily many times, given the same assumptions (for a theory) or conditions (for an experiment).

Transportability (Reuse)

Results are not dependent on any particular theorist, experimentalist or specific apparatus.  They are transportable to other people and places – transcending any particular instance.

Openness

Results are open.  Theorists publish their theories and the corresponding proofs (if possible) or conjectures.  Experimentalists describe the conditions of their experiments and the details of their equipment and procedures.  These steps are taken to ensure the credibility of results by enabling their repeatability and transportability. 

HPC applications, as science, should also share these attributes – in order to rise above the early criticisms of computational science, and to be effective and convincing.

Current Status

Twenty years into the “modern era” of HPC applications, how are we doing?  Clearly, we’ve made our applications bigger and more complex.  Through improvements in the speed of both algorithms and hardware, our applications execute faster.  The concepts of Verification and Validation (V&V) and Uncertainty Quantification (UQ) for scientific codes have taken root – but perhaps not yet fully blossomed in general HPC practice. 

However, despite the laudable efforts of many of our HPC colleagues to solidify the standing of our field, significant issues with repeatability, transportability, and openness remain.  Here are a few recent developments:

Repeatability (Recomputability)

Ian Gent, Professor of Computer Science at the University of St Andrews, has recently published something he calls The Recomputation Manifesto.  It is described in a post of his at the Software Sustainability Institute.  The Manifesto contains six points (emphasis mine):

  1. Computational experiments should be recomputable for all time
  2. Recomputation of recomputable experiments should be very easy
  3. It should be easier to make experiments recomputable than not to
  4. Tools and repositories can help recomputation become standard
  5. The only way to ensure recomputability is to provide virtual machines
  6. Runtime performance is a secondary issue

The Manifesto is based on Gent’s views that:

The current state of experimental reproducibility in computer science is lamentable. The result is inevitable: experimental results enter the literature which are just wrong. I don’t mean that the results don’t generalise. I mean that an algorithm which was claimed to do something just does not do that thing: for example, if the original implementation was bugged and was in fact a different algorithm. I suspect this problem is common, and I know for certain that it has happened. Here’s an example from my own research area, discovered by my friend and tenacious pursuer of replication Patrick Prosser.

The full text of the Manifesto is available on arXiv.  Suffice it to say that Professor Gent’s concerns are well founded and extend beyond computer science to include HPC applications. 

Transportability (Reuse)

A group of investigators from Korea and the US have recently published a paper entitled An Evaluation of the Software System Dependency of a Global Atmospheric Model.  The abstract reads as follows (emphasis mine):

This study presents the dependency of the simulation results from a global atmospheric numerical model on machines with different hardware and software systems. The global model program (GMP) of the Global/Regional Integrated Model system (GRIMs) is tested on 10 different computer systems having different central processing unit (CPU) architectures or compilers. There exist differences in the results for different compilers, parallel libraries, and optimization levels, primarily due to the treatment of rounding errors by the different software systems. The system dependency, which is the standard deviation of the 500-hPa geopotential height averaged over the globe, increases with time. However, its fractional tendency, which is the change of the standard deviation relative to the value itself, remains nearly zero with time. In a seasonal prediction framework, the ensemble spread due to the differences in software system is comparable to the ensemble spread due to the differences in initial conditions that is used for the traditional ensemble forecasting.

The full paper is behind an American Meteorological Society paywall.  Based on my interpretation of the abstract, transportability (or reuse) is a non-trivial issue for this HPC application.  My guess is that this is not an isolated case.

Openness

A group of nine astrophysicists recently published a paper in arXiv entitled Practices in source code sharing in astrophysics.  In it, they write (emphasis mine):

While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make the computational astronomy methods more available to other researchers who wish to apply them to their data.

So, openness clearly also remains an issue for HPC applications. 

Note further that it’s not just the codes and their related parameters that should be publicly available – but also the scientific publications reporting on them.  If you’ve been keeping track, you’ve noted that two papers mentioned in this article are behind paywalls – Ken Wilson’s seminal paper on Grand Challenges to Computational Science (24 years later!) and the recent one on the Global Atmospheric Model (despite its obvious public policy implications).  The good news is that places like arXiv exist and the other publications mentioned here are out in the open.

Consolidating HPC’s Gains

HPC has come a long way.  Our tools have improved greatly.  For example, today’s fastest machine, China’s Tianhe-2, has been clocked at just under 34 Petaflops.  So roughly speaking, HPC performance has improved by a factor of about 600,000 in the past 20 years (and 68 billion in the past 50 years).  Current plans are to have exascale computers in place by the beginning of the next decade.

The rapid pace of improvement in HPC tools and their increasingly broader adoption by industry puts a lot of pressure on HPC applications – and on the financial resources available to support the whole HPC enterprise.  Certainly, HPC applications have grown in scale and become more complex and inclusive of more physical phenomena.  However, arguably, most petascale applications are still done in the old “hero mode” from the early days of computational science.  Most practitioners compute at the terascale – not the petascale – and only limited resources have been made available to help them catch up before the bar is raised to exascale.

So, while we’re working toward exascale HPC tools, perhaps we should consolidate the HPC applications gains we’ve made thus far – so that we’ll be ready to embrace exascale and exploit it fully.  Even if financial resources are scarce, this should be a high priority. 

In addition to bringing more HPC applications – and people – up to the petascale level, we should address the lingering issues of repeatability, transportability, openness discussed above.  If forced to pick one of these three to focus on, openness is probably the key.

If we publish openly and release the related source codes, repeatability and transportability should be solvable problems.  The venues for open publication already exist and are being used by some communities.  To complete this part of openness, just don’t allow your publications to be placed behind paywalls.  There is no good reason that scientific work (probably funded by public money) should be behind paywalls.  Once that bullet has been bitten, source codes must inevitably follow.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This