Consolidating HPC’s Gains

By Gary Johnson

August 13, 2013

Despite phenomenal progress in HPC over a sustained period of decades, a few issues limiting its effectiveness and acceptance remain.  Prominent among these are the repeatability, transportability, and openness of HPC applications.  As we prepare to move HPC to the exascale level, we should take the time and effort to consolidate HPC’s gains and deal with these residual issues from the early days of computational science.  Only then will we be ready to reap the benefits of more powerful HPC tools.

HPC Tools

Nearly fifty years ago, in 1964, the first computer generally acknowledged as a supercomputer – the CDC 6600 – was introduced.  At that time, there was no Linpack Benchmark or Top500 List but, by the measures in use then, it was able to sustain a performance level of about 500 Kiloflops.

In 1970, ARPAnet, the progenitor of the Internet came along.  A few years later, in 1973, Ethernet was invented.  In 1985, NSFnet was created and in the early 1990s it morphed into the Internet.  In 1990 the World Wide Web was born and in 1993 it was made visual by the release of the Mosaic web browser.  Also in 1993, the Top500 List was introduced and its top computer was a Thinking Machines CM-5, clocked at just under 60 Gigaflops.

In summary, HPC has existed for at least half a century and, in terms of HPC tools, we’ve had fairly capable supercomputers and networking for about 20 years.

HPC Applications

The concept of computational science came to public light no later than 1989, when our late friend and colleague, Ken Wilson, published his well-known Grand Challenges to Computational Science paper (unfortunately, it’s locked away behind a paywall).  So, both the HPC tools and the computational science concept for HPC applications gelled into something pretty close to their contemporary form a couple of decades ago. 

Originally, computational science was met with a fair amount of skepticism.  It was seen by some as just a collection of stunts, producing little more than pretty pictures – not the real stuff of science.  It was seen as lacking the rigor necessary to be on par with theory and experiment.  Computational science results were often criticized as one-off demos of unproven concepts. 

So, how effectively and convincingly have we been using HPC?

Repeatability, Transportability, Openness

Both theory and experiment share a few key attributes:

Repeatability (Recomputability)

 A result obtained once can be repeated arbitrarily many times, given the same assumptions (for a theory) or conditions (for an experiment).

Transportability (Reuse)

Results are not dependent on any particular theorist, experimentalist or specific apparatus.  They are transportable to other people and places – transcending any particular instance.


Results are open.  Theorists publish their theories and the corresponding proofs (if possible) or conjectures.  Experimentalists describe the conditions of their experiments and the details of their equipment and procedures.  These steps are taken to ensure the credibility of results by enabling their repeatability and transportability. 

HPC applications, as science, should also share these attributes – in order to rise above the early criticisms of computational science, and to be effective and convincing.

Current Status

Twenty years into the “modern era” of HPC applications, how are we doing?  Clearly, we’ve made our applications bigger and more complex.  Through improvements in the speed of both algorithms and hardware, our applications execute faster.  The concepts of Verification and Validation (V&V) and Uncertainty Quantification (UQ) for scientific codes have taken root – but perhaps not yet fully blossomed in general HPC practice. 

However, despite the laudable efforts of many of our HPC colleagues to solidify the standing of our field, significant issues with repeatability, transportability, and openness remain.  Here are a few recent developments:

Repeatability (Recomputability)

Ian Gent, Professor of Computer Science at the University of St Andrews, has recently published something he calls The Recomputation Manifesto.  It is described in a post of his at the Software Sustainability Institute.  The Manifesto contains six points (emphasis mine):

  1. Computational experiments should be recomputable for all time
  2. Recomputation of recomputable experiments should be very easy
  3. It should be easier to make experiments recomputable than not to
  4. Tools and repositories can help recomputation become standard
  5. The only way to ensure recomputability is to provide virtual machines
  6. Runtime performance is a secondary issue

The Manifesto is based on Gent’s views that:

The current state of experimental reproducibility in computer science is lamentable. The result is inevitable: experimental results enter the literature which are just wrong. I don’t mean that the results don’t generalise. I mean that an algorithm which was claimed to do something just does not do that thing: for example, if the original implementation was bugged and was in fact a different algorithm. I suspect this problem is common, and I know for certain that it has happened. Here’s an example from my own research area, discovered by my friend and tenacious pursuer of replication Patrick Prosser.

The full text of the Manifesto is available on arXiv.  Suffice it to say that Professor Gent’s concerns are well founded and extend beyond computer science to include HPC applications. 

Transportability (Reuse)

A group of investigators from Korea and the US have recently published a paper entitled An Evaluation of the Software System Dependency of a Global Atmospheric Model.  The abstract reads as follows (emphasis mine):

This study presents the dependency of the simulation results from a global atmospheric numerical model on machines with different hardware and software systems. The global model program (GMP) of the Global/Regional Integrated Model system (GRIMs) is tested on 10 different computer systems having different central processing unit (CPU) architectures or compilers. There exist differences in the results for different compilers, parallel libraries, and optimization levels, primarily due to the treatment of rounding errors by the different software systems. The system dependency, which is the standard deviation of the 500-hPa geopotential height averaged over the globe, increases with time. However, its fractional tendency, which is the change of the standard deviation relative to the value itself, remains nearly zero with time. In a seasonal prediction framework, the ensemble spread due to the differences in software system is comparable to the ensemble spread due to the differences in initial conditions that is used for the traditional ensemble forecasting.

The full paper is behind an American Meteorological Society paywall.  Based on my interpretation of the abstract, transportability (or reuse) is a non-trivial issue for this HPC application.  My guess is that this is not an isolated case.


A group of nine astrophysicists recently published a paper in arXiv entitled Practices in source code sharing in astrophysics.  In it, they write (emphasis mine):

While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make the computational astronomy methods more available to other researchers who wish to apply them to their data.

So, openness clearly also remains an issue for HPC applications. 

Note further that it’s not just the codes and their related parameters that should be publicly available – but also the scientific publications reporting on them.  If you’ve been keeping track, you’ve noted that two papers mentioned in this article are behind paywalls – Ken Wilson’s seminal paper on Grand Challenges to Computational Science (24 years later!) and the recent one on the Global Atmospheric Model (despite its obvious public policy implications).  The good news is that places like arXiv exist and the other publications mentioned here are out in the open.

Consolidating HPC’s Gains

HPC has come a long way.  Our tools have improved greatly.  For example, today’s fastest machine, China’s Tianhe-2, has been clocked at just under 34 Petaflops.  So roughly speaking, HPC performance has improved by a factor of about 600,000 in the past 20 years (and 68 billion in the past 50 years).  Current plans are to have exascale computers in place by the beginning of the next decade.

The rapid pace of improvement in HPC tools and their increasingly broader adoption by industry puts a lot of pressure on HPC applications – and on the financial resources available to support the whole HPC enterprise.  Certainly, HPC applications have grown in scale and become more complex and inclusive of more physical phenomena.  However, arguably, most petascale applications are still done in the old “hero mode” from the early days of computational science.  Most practitioners compute at the terascale – not the petascale – and only limited resources have been made available to help them catch up before the bar is raised to exascale.

So, while we’re working toward exascale HPC tools, perhaps we should consolidate the HPC applications gains we’ve made thus far – so that we’ll be ready to embrace exascale and exploit it fully.  Even if financial resources are scarce, this should be a high priority. 

In addition to bringing more HPC applications – and people – up to the petascale level, we should address the lingering issues of repeatability, transportability, openness discussed above.  If forced to pick one of these three to focus on, openness is probably the key.

If we publish openly and release the related source codes, repeatability and transportability should be solvable problems.  The venues for open publication already exist and are being used by some communities.  To complete this part of openness, just don’t allow your publications to be placed behind paywalls.  There is no good reason that scientific work (probably funded by public money) should be behind paywalls.  Once that bullet has been bitten, source codes must inevitably follow.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This