Numascale Delivers Shared Memory Systems at Cluster Price with Virtually Unlimited Number of Cores and Memory

By Nicole Hemsoth

August 19, 2013

HPC Architectures

Current computer architectures have developed along two different branches, one with distributed memory with separate address domains for each node with message passing programming model and another with global shared memory with a common physical address domain for the whole system. The first category is present in massively parallel processors (MPPs) and clusters and the latter is present in the common servers, workstations, personal computers and symmetrical multiprocessing systems (SMPs) through multicore and multi-socket implementations. These two architectures represent distinctly different programming paradigms. The first one (MPP) requires programs that are explicitly written for message passing between processes where each process only has access to its local data. The second category (SMP) can be programmed by multithreading techniques with global access to all data from all processes and processors. The latter represents a simpler model that requires less code and it is also fully equivalent with the architecture and programming model in common workstations and personal computers used by all programmers every day.

Since clusters are composed of general purpose multicore/multisocket processing nodes, these represent a form of a hybrid of the two different architectures described above.

Numascale’s approach to scalable shared memory

Numascale’s NumaConnect extends the SMP programming model to be scaled up by connecting a larger amount of standard servers (up to 4096 with the current implementation) as one global shared memory system (GSM). Such a system provides the same easy-to-use environment as a common workstation, but with the added capacity of a very large shared physical address space and I/O all controlled by a single image operating system. This means that programmers can enjoy the same working environment as their favorite workstation and system administrators have only one system to relate to instead of a bunch of individual nodes found in a cluster. Besides, the SMP model also allows efficient execution of message passing (MPI) programs by using shared memory as communication channel between processes.

Distributed vs shared memory

In distributed memory systems (clusters and MPPs), the different processors residing on different nodes in the system have no direct access to each other’s memories (or I/O space). Data on a different node cannot be referenced directly by the programmer through a variable name like it can in a shared memory architecture. This means that data to be shared or communicated between those processes must be accessed through explisit programming by sending the data over a network. This is normally done through calls to a message passing library (like MPI) that invokes a software driver to perform the data transfer. The data to be sent was (most probably) produced by the sending process and such it resides in one of the caches belonging to the processor that runs the process. This will normally be the case since most MPI programs tend to communicate through relatively short messages in the order of a few bytes per message. The communication library will need to copy the data to a system send buffer and call the routine to setup a DMA transfer by the network adapter that in turn will request the data from memory and transfer it to a buffer on the receiving node. All-in all this requires a number of transactions across system datapaths as depicted in figure Figure 1.

 Message passing with traditional network technology, showing sending side only

Figure 1, Message passing with traditional network technology, showing sending side only

In a shared memory machine, referencing any variable anywhere in the entire dataset is accomplished though a single standard load register instruction. For the programmer, this is utterly simple compared to the task of writing the explisit MPI calls necessary to perform the same task.

The same operation for sending data in the case of running a message passing (MPI) program on a shared memory system only requires the sender to execute a single store instruction (preferably a non-polluting store instruction to avoid local cache pollution) to send up to 16 bytes (this is the maximum amount of data for a single instruction store in the x86 instruction set as of today). The data will be sent to an address that is pointing to the right location in the memory of the remote node as indicated in figure Figure 2.

Message Passing with shared memory, both sender and receiver shown
 

Figure 2, Message Passing with shared memory, both sender and receiver shown

Numascale’s technology is applicable for applications with requirements for memory and processors that exceed the amount available in a single commodity unit. Applications for servers that can benefit from NumaConnect span from HPC applications with requirements for 10-20TBytes of main memory for seismic data processing with advanced algorithms through applications in life sciences to Big Data analytics.

Deployment

Numa systems are available from system integrators world-wide based on the IBMx3755 server system and Supermicro 1042 or 2042 servers. Numascale operates a demo system where potential customers can run their tests. See Numascale website http://numascale.com for details, the request form for access to the demo system is http://numascale.com/numa_access.php.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This