Numascale Delivers Shared Memory Systems at Cluster Price with Virtually Unlimited Number of Cores and Memory

By Nicole Hemsoth

August 19, 2013

HPC Architectures

Current computer architectures have developed along two different branches, one with distributed memory with separate address domains for each node with message passing programming model and another with global shared memory with a common physical address domain for the whole system. The first category is present in massively parallel processors (MPPs) and clusters and the latter is present in the common servers, workstations, personal computers and symmetrical multiprocessing systems (SMPs) through multicore and multi-socket implementations. These two architectures represent distinctly different programming paradigms. The first one (MPP) requires programs that are explicitly written for message passing between processes where each process only has access to its local data. The second category (SMP) can be programmed by multithreading techniques with global access to all data from all processes and processors. The latter represents a simpler model that requires less code and it is also fully equivalent with the architecture and programming model in common workstations and personal computers used by all programmers every day.

Since clusters are composed of general purpose multicore/multisocket processing nodes, these represent a form of a hybrid of the two different architectures described above.

Numascale’s approach to scalable shared memory

Numascale’s NumaConnect extends the SMP programming model to be scaled up by connecting a larger amount of standard servers (up to 4096 with the current implementation) as one global shared memory system (GSM). Such a system provides the same easy-to-use environment as a common workstation, but with the added capacity of a very large shared physical address space and I/O all controlled by a single image operating system. This means that programmers can enjoy the same working environment as their favorite workstation and system administrators have only one system to relate to instead of a bunch of individual nodes found in a cluster. Besides, the SMP model also allows efficient execution of message passing (MPI) programs by using shared memory as communication channel between processes.

Distributed vs shared memory

In distributed memory systems (clusters and MPPs), the different processors residing on different nodes in the system have no direct access to each other’s memories (or I/O space). Data on a different node cannot be referenced directly by the programmer through a variable name like it can in a shared memory architecture. This means that data to be shared or communicated between those processes must be accessed through explisit programming by sending the data over a network. This is normally done through calls to a message passing library (like MPI) that invokes a software driver to perform the data transfer. The data to be sent was (most probably) produced by the sending process and such it resides in one of the caches belonging to the processor that runs the process. This will normally be the case since most MPI programs tend to communicate through relatively short messages in the order of a few bytes per message. The communication library will need to copy the data to a system send buffer and call the routine to setup a DMA transfer by the network adapter that in turn will request the data from memory and transfer it to a buffer on the receiving node. All-in all this requires a number of transactions across system datapaths as depicted in figure Figure 1.

 Message passing with traditional network technology, showing sending side only

Figure 1, Message passing with traditional network technology, showing sending side only

In a shared memory machine, referencing any variable anywhere in the entire dataset is accomplished though a single standard load register instruction. For the programmer, this is utterly simple compared to the task of writing the explisit MPI calls necessary to perform the same task.

The same operation for sending data in the case of running a message passing (MPI) program on a shared memory system only requires the sender to execute a single store instruction (preferably a non-polluting store instruction to avoid local cache pollution) to send up to 16 bytes (this is the maximum amount of data for a single instruction store in the x86 instruction set as of today). The data will be sent to an address that is pointing to the right location in the memory of the remote node as indicated in figure Figure 2.

Message Passing with shared memory, both sender and receiver shown
 

Figure 2, Message Passing with shared memory, both sender and receiver shown

Numascale’s technology is applicable for applications with requirements for memory and processors that exceed the amount available in a single commodity unit. Applications for servers that can benefit from NumaConnect span from HPC applications with requirements for 10-20TBytes of main memory for seismic data processing with advanced algorithms through applications in life sciences to Big Data analytics.

Deployment

Numa systems are available from system integrators world-wide based on the IBMx3755 server system and Supermicro 1042 or 2042 servers. Numascale operates a demo system where potential customers can run their tests. See Numascale website http://numascale.com for details, the request form for access to the demo system is http://numascale.com/numa_access.php.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This