Where Has HPC’s Math Gone?

By Gary Johnson

August 19, 2013

When we think about progress in HPC, most of us use hardware speed, as reported in listings like the Top500, as our yardstick.  But, is that the whole story – or even its most important component?  HPC hardware and the attendant systems software and tools suites are certainly necessary for progress.  But to harness HPC for practical problem solving, we also need the right math, as expressed in our solvers and applications algorithms.  Hardware is tangible and visible while math is seen through the mind’s eye – and is easily overlooked.  Lately, there hasn’t been much public discussion of HPC’s math.  Where has it gone?  Has it matured to the point of invisibility – or is it still a vibrant and dynamic part of HPC?  Let’s take a look.

“Unglamorous but Critical”

From the early days of HPC, math was clearly seen as a vital element.  In December of 1982, the Report of the Panel on Large Scale Computing in Science and Engineering, also known as the Lax Report, was published. One of its recommendations called for (emphasis mine):

Increased research in computational mathematics, software, and algorithms necessary to the effective and efficient use of supercomputer systems

Twenty years later, in July of 2003, the Department of Energy (DOE)’s Office of Science published: A Science-Based Case for Large-Scale Simulation, also known as the SCaLeS Report (Volume 1, Volume 2).  Among other things, it reiterated the critical role of solvers in HPC (emphasis mine):

Like the engine hidden beneath the hood of a car, the solver is an unglamorous but critical component of a scientific code, upon which the function of the whole critically depends. As an engine needs to be properly matched to avoid overheating and failure when the vehicle’s performance requirements are pushed, so a solver appropriate to the simulation at hand is required as the computational burden gets heavier with new physics or as the distance across the data structures increases with enhanced resolution.

Solvers & Speedup

When improvements in HPC hardware performance are discussed, mention is often made of Moore’s Law and the desire to keep pace with it.  Perhaps less well known is the observation that algorithm speedups have historically matched hardware speedups due to Moore’s Law.  For example, consider this excerpt from the SCaLeS Report:

The choice of appropriate mathematical tools can make or break a simulation code. For example, over a four-decade period of our brief simulation era, algorithms alone have brought a speed increase of a factor of more than a million to computing the electrostatic potential induced by a charge distribution, typical of a computational kernel found in a wide variety of problems in the sciences. The improvement resulting from this algorithmic speedup is comparable to that resulting from the hardware speedup due to Moore’s Law over the same length of time (see Figure 13).

Figure 13.

Top: A table of the scaling of memory and processing requirements for the solution of the electrostatic potential equation on a uniform cubic grid of n × n × n cells.

Bottom: The relative gains of some solution algorithms for this problem and Moore’s Law for improvement of processing rates over the same period (illustrated for the case where n = 64).

Algorithms yield a factor comparable to that of the hardware, and the gains typically can be combined (that is, multiplied together). The algorithmic gains become more important than the hardware gains for larger problems. If adaptivity is exploited in the discretization, algorithms may do better still, though combining all of the gains becomes more subtle in this case.

Time to Solution

So, if hardware gains and algorithmic gains could be “multiplied together,” what would that imply?  If we are currently targeting a 1,000 fold increase in hardware speed over the present decade and if algorithmic gains keep pace, then in ten years we’ll have improved our problem solving capability by a factor of 1,000,000.  Thus we’d be able to solve today’s problems in one millionth of their current solution time or use today’s time to solution to tackle problems a million times harder.  Sounds pretty impressive.  Is the necessary math on track to make this happen? 

Obviously, things aren’t as simplistic as I’ve made them out to be.  To get the multiplicative effect, algorithms and hardware architectures should be independent of one another.  But in real HPC life, algorithms and hardware architectures interact.  Fast algorithms are usually “complicated” and complicated algorithms are best implemented on “simple” uncomplicated architectures.  Historically, when new, more complicated, hardware architectures are introduced we revert to simpler and slower solvers.  Consequently, the optimistic estimates of improvement in time to solution may not materialize.  In fact, time to solution could go up.  This effect can go largely unnoticed by the general community because simpler solvers can require lots of mathematical operations and faster architectures spit out more operations per second.  Thus in this situation, applications codes can run “fast” but produce solutions slowly.

As we move toward extreme scale HPC hardware, the interaction of algorithms and hardware architectures is becoming more important than ever.  Last year, DOE’s Office of Advanced Scientific Computing Research (ASCR) published a Report on the Workshop on Extreme-Scale Solvers: Transition to Future Architectures.  In it, the following observation is made (emphasis mine):

The needs of extreme-scale science are expected to drive a hundredfold increase in computational capabilities by mid-decade and a factor of 1,000 increase within ten years. These 100 PF (and larger) supercomputers will change the way scientific discoveries are made; moreover, the technology developed for those systems will provide desktop performance on par with the fastest systems from just a few years ago. Since numerical solvers are at the heart of the codes that enable these discoveries, the development of efficient, robust, high-performance, portable solvers has a tremendous impact on harnessing these computers to achieve new science. But future architectures present major challenges to the research and development of such solvers. These architectural challenges include extreme parallelism, data placement and movement, resilience, and heterogeneity. 

Solver Dominance

The extreme-scale solver report goes on to address the issue of solver dominance:

Increasing the efficiency of numerical solvers will significantly improve the ability of computational scientists to make scientific discoveries, because such solvers account for so much of the computation underlying scientific applications. 

This figure, taken from the extreme-scale solver report, shows that for a typical application as processor count and problem size increase, the time spent in the application’s solver (blue), relative to the time spent in the rest of the application’s code (pink), grows and soon dominates the total execution time.

What’s to be done about this – especially as we anticipate the move to exascale architectures? 

ExaMath

In an attempt to find some answers, ASCR has formed an Exascale Mathematics Working Group (EMWG) “for the purpose of identifying mathematics and algorithms research opportunities that will enable scientific applications to harness the potential of exascale computing.”

At ASCR’s request, the EMWG has organized a DOE Workshop on Applied Mathematics Research for Exascale Computing (ExaMath13).  ExaMath13 is taking place on 21-22 August and encompasses 40 presentations, selected on the basis of two-page position papers submitted to the EMWG a few months ago.  About 2/3s of the presenters are from the DOE Labs with the rest coming from universities.  The seventy five submitted position papers from which the 40 presentations were selected may be found at the EMWG website.  They make interesting reading and reinforce one’s optimism about the applied math community’s commitment to meeting the challenges posed by exascale architectures.

As the ExaMath problem is complex, it’s not surprising that most of the position papers deal with intricate mathematics.  However, a few also address the bigger picture.  To mention just one of those, Ulrich Ruede’s paper, entitled: New Mathematics for Exascale Computational Science?, summarizes the challenges faced by the applied math community particularly well:

I believe that the advent of exascale forces mathematics to address the performance abyss that widens increasingly between existing math theory and the practical use of HPC systems. Tweaking codes is not enough – we must turn back and analyze where we have not yet thought deeply enough, developing a new interdisciplinary algorithm and performance engineering methodology. Beyond this, exascale opens fascinating new opportunities in fundamental research that go far beyond just increasing the mesh resolution.

So, it looks like HPC’s math is back in the foreground.  There are lots of bright folks in the applied math community.  Let’s see what they come up with to address the difficulties posed by ExaMath.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This