Where Has HPC’s Math Gone?

By Gary Johnson

August 19, 2013

When we think about progress in HPC, most of us use hardware speed, as reported in listings like the Top500, as our yardstick.  But, is that the whole story – or even its most important component?  HPC hardware and the attendant systems software and tools suites are certainly necessary for progress.  But to harness HPC for practical problem solving, we also need the right math, as expressed in our solvers and applications algorithms.  Hardware is tangible and visible while math is seen through the mind’s eye – and is easily overlooked.  Lately, there hasn’t been much public discussion of HPC’s math.  Where has it gone?  Has it matured to the point of invisibility – or is it still a vibrant and dynamic part of HPC?  Let’s take a look.

“Unglamorous but Critical”

From the early days of HPC, math was clearly seen as a vital element.  In December of 1982, the Report of the Panel on Large Scale Computing in Science and Engineering, also known as the Lax Report, was published. One of its recommendations called for (emphasis mine):

Increased research in computational mathematics, software, and algorithms necessary to the effective and efficient use of supercomputer systems

Twenty years later, in July of 2003, the Department of Energy (DOE)’s Office of Science published: A Science-Based Case for Large-Scale Simulation, also known as the SCaLeS Report (Volume 1, Volume 2).  Among other things, it reiterated the critical role of solvers in HPC (emphasis mine):

Like the engine hidden beneath the hood of a car, the solver is an unglamorous but critical component of a scientific code, upon which the function of the whole critically depends. As an engine needs to be properly matched to avoid overheating and failure when the vehicle’s performance requirements are pushed, so a solver appropriate to the simulation at hand is required as the computational burden gets heavier with new physics or as the distance across the data structures increases with enhanced resolution.

Solvers & Speedup

When improvements in HPC hardware performance are discussed, mention is often made of Moore’s Law and the desire to keep pace with it.  Perhaps less well known is the observation that algorithm speedups have historically matched hardware speedups due to Moore’s Law.  For example, consider this excerpt from the SCaLeS Report:

The choice of appropriate mathematical tools can make or break a simulation code. For example, over a four-decade period of our brief simulation era, algorithms alone have brought a speed increase of a factor of more than a million to computing the electrostatic potential induced by a charge distribution, typical of a computational kernel found in a wide variety of problems in the sciences. The improvement resulting from this algorithmic speedup is comparable to that resulting from the hardware speedup due to Moore’s Law over the same length of time (see Figure 13).

Figure 13.

Top: A table of the scaling of memory and processing requirements for the solution of the electrostatic potential equation on a uniform cubic grid of n × n × n cells.

Bottom: The relative gains of some solution algorithms for this problem and Moore’s Law for improvement of processing rates over the same period (illustrated for the case where n = 64).

Algorithms yield a factor comparable to that of the hardware, and the gains typically can be combined (that is, multiplied together). The algorithmic gains become more important than the hardware gains for larger problems. If adaptivity is exploited in the discretization, algorithms may do better still, though combining all of the gains becomes more subtle in this case.

Time to Solution

So, if hardware gains and algorithmic gains could be “multiplied together,” what would that imply?  If we are currently targeting a 1,000 fold increase in hardware speed over the present decade and if algorithmic gains keep pace, then in ten years we’ll have improved our problem solving capability by a factor of 1,000,000.  Thus we’d be able to solve today’s problems in one millionth of their current solution time or use today’s time to solution to tackle problems a million times harder.  Sounds pretty impressive.  Is the necessary math on track to make this happen? 

Obviously, things aren’t as simplistic as I’ve made them out to be.  To get the multiplicative effect, algorithms and hardware architectures should be independent of one another.  But in real HPC life, algorithms and hardware architectures interact.  Fast algorithms are usually “complicated” and complicated algorithms are best implemented on “simple” uncomplicated architectures.  Historically, when new, more complicated, hardware architectures are introduced we revert to simpler and slower solvers.  Consequently, the optimistic estimates of improvement in time to solution may not materialize.  In fact, time to solution could go up.  This effect can go largely unnoticed by the general community because simpler solvers can require lots of mathematical operations and faster architectures spit out more operations per second.  Thus in this situation, applications codes can run “fast” but produce solutions slowly.

As we move toward extreme scale HPC hardware, the interaction of algorithms and hardware architectures is becoming more important than ever.  Last year, DOE’s Office of Advanced Scientific Computing Research (ASCR) published a Report on the Workshop on Extreme-Scale Solvers: Transition to Future Architectures.  In it, the following observation is made (emphasis mine):

The needs of extreme-scale science are expected to drive a hundredfold increase in computational capabilities by mid-decade and a factor of 1,000 increase within ten years. These 100 PF (and larger) supercomputers will change the way scientific discoveries are made; moreover, the technology developed for those systems will provide desktop performance on par with the fastest systems from just a few years ago. Since numerical solvers are at the heart of the codes that enable these discoveries, the development of efficient, robust, high-performance, portable solvers has a tremendous impact on harnessing these computers to achieve new science. But future architectures present major challenges to the research and development of such solvers. These architectural challenges include extreme parallelism, data placement and movement, resilience, and heterogeneity. 

Solver Dominance

The extreme-scale solver report goes on to address the issue of solver dominance:

Increasing the efficiency of numerical solvers will significantly improve the ability of computational scientists to make scientific discoveries, because such solvers account for so much of the computation underlying scientific applications. 

This figure, taken from the extreme-scale solver report, shows that for a typical application as processor count and problem size increase, the time spent in the application’s solver (blue), relative to the time spent in the rest of the application’s code (pink), grows and soon dominates the total execution time.

What’s to be done about this – especially as we anticipate the move to exascale architectures? 

ExaMath

In an attempt to find some answers, ASCR has formed an Exascale Mathematics Working Group (EMWG) “for the purpose of identifying mathematics and algorithms research opportunities that will enable scientific applications to harness the potential of exascale computing.”

At ASCR’s request, the EMWG has organized a DOE Workshop on Applied Mathematics Research for Exascale Computing (ExaMath13).  ExaMath13 is taking place on 21-22 August and encompasses 40 presentations, selected on the basis of two-page position papers submitted to the EMWG a few months ago.  About 2/3s of the presenters are from the DOE Labs with the rest coming from universities.  The seventy five submitted position papers from which the 40 presentations were selected may be found at the EMWG website.  They make interesting reading and reinforce one’s optimism about the applied math community’s commitment to meeting the challenges posed by exascale architectures.

As the ExaMath problem is complex, it’s not surprising that most of the position papers deal with intricate mathematics.  However, a few also address the bigger picture.  To mention just one of those, Ulrich Ruede’s paper, entitled: New Mathematics for Exascale Computational Science?, summarizes the challenges faced by the applied math community particularly well:

I believe that the advent of exascale forces mathematics to address the performance abyss that widens increasingly between existing math theory and the practical use of HPC systems. Tweaking codes is not enough – we must turn back and analyze where we have not yet thought deeply enough, developing a new interdisciplinary algorithm and performance engineering methodology. Beyond this, exascale opens fascinating new opportunities in fundamental research that go far beyond just increasing the mesh resolution.

So, it looks like HPC’s math is back in the foreground.  There are lots of bright folks in the applied math community.  Let’s see what they come up with to address the difficulties posed by ExaMath.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This