Where Has HPC’s Math Gone?

By Gary Johnson

August 19, 2013

When we think about progress in HPC, most of us use hardware speed, as reported in listings like the Top500, as our yardstick.  But, is that the whole story – or even its most important component?  HPC hardware and the attendant systems software and tools suites are certainly necessary for progress.  But to harness HPC for practical problem solving, we also need the right math, as expressed in our solvers and applications algorithms.  Hardware is tangible and visible while math is seen through the mind’s eye – and is easily overlooked.  Lately, there hasn’t been much public discussion of HPC’s math.  Where has it gone?  Has it matured to the point of invisibility – or is it still a vibrant and dynamic part of HPC?  Let’s take a look.

“Unglamorous but Critical”

From the early days of HPC, math was clearly seen as a vital element.  In December of 1982, the Report of the Panel on Large Scale Computing in Science and Engineering, also known as the Lax Report, was published. One of its recommendations called for (emphasis mine):

Increased research in computational mathematics, software, and algorithms necessary to the effective and efficient use of supercomputer systems

Twenty years later, in July of 2003, the Department of Energy (DOE)’s Office of Science published: A Science-Based Case for Large-Scale Simulation, also known as the SCaLeS Report (Volume 1, Volume 2).  Among other things, it reiterated the critical role of solvers in HPC (emphasis mine):

Like the engine hidden beneath the hood of a car, the solver is an unglamorous but critical component of a scientific code, upon which the function of the whole critically depends. As an engine needs to be properly matched to avoid overheating and failure when the vehicle’s performance requirements are pushed, so a solver appropriate to the simulation at hand is required as the computational burden gets heavier with new physics or as the distance across the data structures increases with enhanced resolution.

Solvers & Speedup

When improvements in HPC hardware performance are discussed, mention is often made of Moore’s Law and the desire to keep pace with it.  Perhaps less well known is the observation that algorithm speedups have historically matched hardware speedups due to Moore’s Law.  For example, consider this excerpt from the SCaLeS Report:

The choice of appropriate mathematical tools can make or break a simulation code. For example, over a four-decade period of our brief simulation era, algorithms alone have brought a speed increase of a factor of more than a million to computing the electrostatic potential induced by a charge distribution, typical of a computational kernel found in a wide variety of problems in the sciences. The improvement resulting from this algorithmic speedup is comparable to that resulting from the hardware speedup due to Moore’s Law over the same length of time (see Figure 13).

Figure 13.

Top: A table of the scaling of memory and processing requirements for the solution of the electrostatic potential equation on a uniform cubic grid of n × n × n cells.

Bottom: The relative gains of some solution algorithms for this problem and Moore’s Law for improvement of processing rates over the same period (illustrated for the case where n = 64).

Algorithms yield a factor comparable to that of the hardware, and the gains typically can be combined (that is, multiplied together). The algorithmic gains become more important than the hardware gains for larger problems. If adaptivity is exploited in the discretization, algorithms may do better still, though combining all of the gains becomes more subtle in this case.

Time to Solution

So, if hardware gains and algorithmic gains could be “multiplied together,” what would that imply?  If we are currently targeting a 1,000 fold increase in hardware speed over the present decade and if algorithmic gains keep pace, then in ten years we’ll have improved our problem solving capability by a factor of 1,000,000.  Thus we’d be able to solve today’s problems in one millionth of their current solution time or use today’s time to solution to tackle problems a million times harder.  Sounds pretty impressive.  Is the necessary math on track to make this happen? 

Obviously, things aren’t as simplistic as I’ve made them out to be.  To get the multiplicative effect, algorithms and hardware architectures should be independent of one another.  But in real HPC life, algorithms and hardware architectures interact.  Fast algorithms are usually “complicated” and complicated algorithms are best implemented on “simple” uncomplicated architectures.  Historically, when new, more complicated, hardware architectures are introduced we revert to simpler and slower solvers.  Consequently, the optimistic estimates of improvement in time to solution may not materialize.  In fact, time to solution could go up.  This effect can go largely unnoticed by the general community because simpler solvers can require lots of mathematical operations and faster architectures spit out more operations per second.  Thus in this situation, applications codes can run “fast” but produce solutions slowly.

As we move toward extreme scale HPC hardware, the interaction of algorithms and hardware architectures is becoming more important than ever.  Last year, DOE’s Office of Advanced Scientific Computing Research (ASCR) published a Report on the Workshop on Extreme-Scale Solvers: Transition to Future Architectures.  In it, the following observation is made (emphasis mine):

The needs of extreme-scale science are expected to drive a hundredfold increase in computational capabilities by mid-decade and a factor of 1,000 increase within ten years. These 100 PF (and larger) supercomputers will change the way scientific discoveries are made; moreover, the technology developed for those systems will provide desktop performance on par with the fastest systems from just a few years ago. Since numerical solvers are at the heart of the codes that enable these discoveries, the development of efficient, robust, high-performance, portable solvers has a tremendous impact on harnessing these computers to achieve new science. But future architectures present major challenges to the research and development of such solvers. These architectural challenges include extreme parallelism, data placement and movement, resilience, and heterogeneity. 

Solver Dominance

The extreme-scale solver report goes on to address the issue of solver dominance:

Increasing the efficiency of numerical solvers will significantly improve the ability of computational scientists to make scientific discoveries, because such solvers account for so much of the computation underlying scientific applications. 

This figure, taken from the extreme-scale solver report, shows that for a typical application as processor count and problem size increase, the time spent in the application’s solver (blue), relative to the time spent in the rest of the application’s code (pink), grows and soon dominates the total execution time.

What’s to be done about this – especially as we anticipate the move to exascale architectures? 

ExaMath

In an attempt to find some answers, ASCR has formed an Exascale Mathematics Working Group (EMWG) “for the purpose of identifying mathematics and algorithms research opportunities that will enable scientific applications to harness the potential of exascale computing.”

At ASCR’s request, the EMWG has organized a DOE Workshop on Applied Mathematics Research for Exascale Computing (ExaMath13).  ExaMath13 is taking place on 21-22 August and encompasses 40 presentations, selected on the basis of two-page position papers submitted to the EMWG a few months ago.  About 2/3s of the presenters are from the DOE Labs with the rest coming from universities.  The seventy five submitted position papers from which the 40 presentations were selected may be found at the EMWG website.  They make interesting reading and reinforce one’s optimism about the applied math community’s commitment to meeting the challenges posed by exascale architectures.

As the ExaMath problem is complex, it’s not surprising that most of the position papers deal with intricate mathematics.  However, a few also address the bigger picture.  To mention just one of those, Ulrich Ruede’s paper, entitled: New Mathematics for Exascale Computational Science?, summarizes the challenges faced by the applied math community particularly well:

I believe that the advent of exascale forces mathematics to address the performance abyss that widens increasingly between existing math theory and the practical use of HPC systems. Tweaking codes is not enough – we must turn back and analyze where we have not yet thought deeply enough, developing a new interdisciplinary algorithm and performance engineering methodology. Beyond this, exascale opens fascinating new opportunities in fundamental research that go far beyond just increasing the mesh resolution.

So, it looks like HPC’s math is back in the foreground.  There are lots of bright folks in the applied math community.  Let’s see what they come up with to address the difficulties posed by ExaMath.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This