Where Has HPC’s Math Gone?

By Gary Johnson

August 19, 2013

When we think about progress in HPC, most of us use hardware speed, as reported in listings like the Top500, as our yardstick.  But, is that the whole story – or even its most important component?  HPC hardware and the attendant systems software and tools suites are certainly necessary for progress.  But to harness HPC for practical problem solving, we also need the right math, as expressed in our solvers and applications algorithms.  Hardware is tangible and visible while math is seen through the mind’s eye – and is easily overlooked.  Lately, there hasn’t been much public discussion of HPC’s math.  Where has it gone?  Has it matured to the point of invisibility – or is it still a vibrant and dynamic part of HPC?  Let’s take a look.

“Unglamorous but Critical”

From the early days of HPC, math was clearly seen as a vital element.  In December of 1982, the Report of the Panel on Large Scale Computing in Science and Engineering, also known as the Lax Report, was published. One of its recommendations called for (emphasis mine):

Increased research in computational mathematics, software, and algorithms necessary to the effective and efficient use of supercomputer systems

Twenty years later, in July of 2003, the Department of Energy (DOE)’s Office of Science published: A Science-Based Case for Large-Scale Simulation, also known as the SCaLeS Report (Volume 1, Volume 2).  Among other things, it reiterated the critical role of solvers in HPC (emphasis mine):

Like the engine hidden beneath the hood of a car, the solver is an unglamorous but critical component of a scientific code, upon which the function of the whole critically depends. As an engine needs to be properly matched to avoid overheating and failure when the vehicle’s performance requirements are pushed, so a solver appropriate to the simulation at hand is required as the computational burden gets heavier with new physics or as the distance across the data structures increases with enhanced resolution.

Solvers & Speedup

When improvements in HPC hardware performance are discussed, mention is often made of Moore’s Law and the desire to keep pace with it.  Perhaps less well known is the observation that algorithm speedups have historically matched hardware speedups due to Moore’s Law.  For example, consider this excerpt from the SCaLeS Report:

The choice of appropriate mathematical tools can make or break a simulation code. For example, over a four-decade period of our brief simulation era, algorithms alone have brought a speed increase of a factor of more than a million to computing the electrostatic potential induced by a charge distribution, typical of a computational kernel found in a wide variety of problems in the sciences. The improvement resulting from this algorithmic speedup is comparable to that resulting from the hardware speedup due to Moore’s Law over the same length of time (see Figure 13).

Figure 13.

Top: A table of the scaling of memory and processing requirements for the solution of the electrostatic potential equation on a uniform cubic grid of n × n × n cells.

Bottom: The relative gains of some solution algorithms for this problem and Moore’s Law for improvement of processing rates over the same period (illustrated for the case where n = 64).

Algorithms yield a factor comparable to that of the hardware, and the gains typically can be combined (that is, multiplied together). The algorithmic gains become more important than the hardware gains for larger problems. If adaptivity is exploited in the discretization, algorithms may do better still, though combining all of the gains becomes more subtle in this case.

Time to Solution

So, if hardware gains and algorithmic gains could be “multiplied together,” what would that imply?  If we are currently targeting a 1,000 fold increase in hardware speed over the present decade and if algorithmic gains keep pace, then in ten years we’ll have improved our problem solving capability by a factor of 1,000,000.  Thus we’d be able to solve today’s problems in one millionth of their current solution time or use today’s time to solution to tackle problems a million times harder.  Sounds pretty impressive.  Is the necessary math on track to make this happen? 

Obviously, things aren’t as simplistic as I’ve made them out to be.  To get the multiplicative effect, algorithms and hardware architectures should be independent of one another.  But in real HPC life, algorithms and hardware architectures interact.  Fast algorithms are usually “complicated” and complicated algorithms are best implemented on “simple” uncomplicated architectures.  Historically, when new, more complicated, hardware architectures are introduced we revert to simpler and slower solvers.  Consequently, the optimistic estimates of improvement in time to solution may not materialize.  In fact, time to solution could go up.  This effect can go largely unnoticed by the general community because simpler solvers can require lots of mathematical operations and faster architectures spit out more operations per second.  Thus in this situation, applications codes can run “fast” but produce solutions slowly.

As we move toward extreme scale HPC hardware, the interaction of algorithms and hardware architectures is becoming more important than ever.  Last year, DOE’s Office of Advanced Scientific Computing Research (ASCR) published a Report on the Workshop on Extreme-Scale Solvers: Transition to Future Architectures.  In it, the following observation is made (emphasis mine):

The needs of extreme-scale science are expected to drive a hundredfold increase in computational capabilities by mid-decade and a factor of 1,000 increase within ten years. These 100 PF (and larger) supercomputers will change the way scientific discoveries are made; moreover, the technology developed for those systems will provide desktop performance on par with the fastest systems from just a few years ago. Since numerical solvers are at the heart of the codes that enable these discoveries, the development of efficient, robust, high-performance, portable solvers has a tremendous impact on harnessing these computers to achieve new science. But future architectures present major challenges to the research and development of such solvers. These architectural challenges include extreme parallelism, data placement and movement, resilience, and heterogeneity. 

Solver Dominance

The extreme-scale solver report goes on to address the issue of solver dominance:

Increasing the efficiency of numerical solvers will significantly improve the ability of computational scientists to make scientific discoveries, because such solvers account for so much of the computation underlying scientific applications. 

This figure, taken from the extreme-scale solver report, shows that for a typical application as processor count and problem size increase, the time spent in the application’s solver (blue), relative to the time spent in the rest of the application’s code (pink), grows and soon dominates the total execution time.

What’s to be done about this – especially as we anticipate the move to exascale architectures? 

ExaMath

In an attempt to find some answers, ASCR has formed an Exascale Mathematics Working Group (EMWG) “for the purpose of identifying mathematics and algorithms research opportunities that will enable scientific applications to harness the potential of exascale computing.”

At ASCR’s request, the EMWG has organized a DOE Workshop on Applied Mathematics Research for Exascale Computing (ExaMath13).  ExaMath13 is taking place on 21-22 August and encompasses 40 presentations, selected on the basis of two-page position papers submitted to the EMWG a few months ago.  About 2/3s of the presenters are from the DOE Labs with the rest coming from universities.  The seventy five submitted position papers from which the 40 presentations were selected may be found at the EMWG website.  They make interesting reading and reinforce one’s optimism about the applied math community’s commitment to meeting the challenges posed by exascale architectures.

As the ExaMath problem is complex, it’s not surprising that most of the position papers deal with intricate mathematics.  However, a few also address the bigger picture.  To mention just one of those, Ulrich Ruede’s paper, entitled: New Mathematics for Exascale Computational Science?, summarizes the challenges faced by the applied math community particularly well:

I believe that the advent of exascale forces mathematics to address the performance abyss that widens increasingly between existing math theory and the practical use of HPC systems. Tweaking codes is not enough – we must turn back and analyze where we have not yet thought deeply enough, developing a new interdisciplinary algorithm and performance engineering methodology. Beyond this, exascale opens fascinating new opportunities in fundamental research that go far beyond just increasing the mesh resolution.

So, it looks like HPC’s math is back in the foreground.  There are lots of bright folks in the applied math community.  Let’s see what they come up with to address the difficulties posed by ExaMath.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This