Why the Cloud is Ideal for HPC

By Nicole Hemsoth

September 5, 2013

Cloud computing has emerged as a model to address a broad range of computing needs and promises to solve all but world peace. The idea of utility or on-demand computing is hardly new but the business models and technology have matured sufficiently to propel the concept firmly back into the limelight. High Performance Computing (HPC) is where most progressive businesses should be focusing their Big Data and Big Compute efforts.

Unfortunately, some companies pigeon hole HPC as scientists geeking out with massive supercomputers. However, there is a far more significant market evolving outside of traditional HPC with growing computational needs. Big Data and Big Compute is an excellent example where the opportunity for deep analytical insight is an extremely attractive proposition to a wide range of vertical markets. This new segment of the market is often referred to as the “Missing Middle,” and disruptive technology solutions such as those offered by GreenButton put supercomputing power within progressive companies’ reach.

With effective job management as demonstrated below, thousands of HPC activities can be managed by companies such as GreenButton though innovative technology and simple to use web interfaces.

 GreenButton Web Interface

Keep in mind, when we talk about HPC in the cloud, it’s important to remember that cloud computing is ultimately a business model, not a technology. However, there are a common set of technical capabilities (e.g. virtualization) that are realized in the cloud, and these, as well as the business model provide certain benefits or challenges to HPC applications.

The Positives

CFO’s Pay Attention to this!!

Cost: For spikey workloads, the cost savings in the cloud can be significant. What’s more, the cost is an Operational Expense rather than Cap-Ex so is often more palatable for many businesses as costs can be attributed to a particular project.

Ease of use: The cloud can make dynamic provisioning of specified workloads very easy. The ability to have OS/Software configurations particular to a workload is a key advantage.

Speed of deployment: The ability to rapidly provision new environments/clusters in minutes is incredibly valuable to many businesses.

Scalability: Elastically scaling out to meet increased capacity demands is a powerful concept. The public cloud promises “infinite” scale. The reality is somewhat different: there are some real limits even in the cloud. But the computing capacity that you can get from large providers such as AWS and Azure is far greater than what most customers can fathom with internal hardware. Some companies – such as GreenButton work with a variety of cloud providers such as Windows Azure, HP Cloud Services, OpenStack, Amazon Web Services, and VMware for global access to resources.

 GreenButton Map

Resiliency: The ability to snapshot workloads as they are running can allow for check-pointing of MPI workloads. Combine this with active monitoring and the ability to dynamically move a guest VM from one physical host to another, and your workloads can keep running even in the face of hardware failure.

Portability: The ability to move a workload from one cloud platform to another on the fly without any application changes presents powerful options such as for bursting from a private cloud out to a public cloud, High Availability where a workload is run on multiple clouds simultaneously, scaling across multiple clouds to meet extremely high resource requirements or, to take advantage of shifts in the spot pricing market.

Challenges

Security: this remains a significant barrier to adoption today, but the issue is primarily in trust and perception rather than real limitations of the cloud platforms. One could argue that in some cases your data is safer in the hands of Amazon or Microsoft than your own data center. That said, data isn’t sufficiently secure by default so some effort commensurate to the sensitivity and risks needs to be applied. For example;

  • Encryption at rest of cloud-bound data.
  • Limiting the time window that data is resident in the cloud.
  • Anonymizing data. A great example is running risk models for the financial services sector where sensitive customer data can easily be stripped out prior to sending to the cloud.

Performance: There is no single answer to the question of performance, though in general the cloud offers massive performance gains in most cases (and therefore is generally a positive), this does depend on the workload in question and presents some challenges today.

Some workloads scale in a linear fashion i.e. embarrassingly parallel, and these scale extremely well to the cloud. Even many MPI workloads scale perfectly well on cloud infrastructure.

However, I/O bound MPI processes will often run into performance challenges due to their heavy demands on network infrastructure or sensitivity to latency. Many traditional HPC applications are tuned for very low-latency Infiniband interconnects and take advantage of RDMA technology. These applications just won’t scale on the 10 GigE networks within the cloud.   This will change as cloud providers roll out Infiniband or RDMA over Ethernet but for the time being remains an issue.

Other challenges lie in certain cloud platforms intentionally distributing your deployed instances across the data center to increase availability. This can negatively affect performance through increased latency. But this is increasingly being rectified with increased control over physical placement of VMs – e.g. AWS Placement Groups.

I’m not going to dwell on the overhead of virtualization as there is a lot of material on the web covering this topic. I will say that modern virtualization technologies have such a small overhead on CPU performance today that it is effectively negligible. The I/O hit in some cases can be more noticeable but this depends on the characteristics of the workload. Josh Simons of VMware has posted extensively about this so check out his posts at http://cto.vmware.com/author/joshsimons/

Management: One of the challenges when spreading workloads across more than one platform is management of the workloads and resources being utilized. Being able to consolidate management within a single tool becomes critical for effective use of the cloud.

Data: Moving large datasets to the cloud still presents some challenges. In the Oil & Gas sector we physically ship 50TB+ to AWS where it undergoes weeks/months of processing, and the entire workflow lives in the cloud using visualization technology. RenderMan workloads also present challenges with large datasets (up to 1GB per frame). There are also technologies such as Aspera or GreenButton’s own CloudSync which optimize throughput over the internet.

Managing Costs: There is obviously some level of fear when moving from a known and understood capital expenditure model to one of pay-by-the-drink where costs could spiral out of control. Trust me, this has many CFOs awake at night in a cold sweat. At GreenButton, we’ve addressed this by predicting job execution time and committing to users on runtime and cost. We also support cost monitoring and chargebacks down to the departmental or user level so the CFO never has to get any nasty surprises!

Cloud Lock-in:   Different cloud vendors have different APIs and deployment mechanisms, so you may be concerned about being locked into a particular cloud and being unable to take advantage of improved pricing or services becoming available in other clouds.  I’ve written about how to avoid cloud lock-in before so I won’t repeat it here!

Cloud Bursting

One advantage of moving HPC workloads to on-demand virtualized infrastructure is that Enterprise customers can take advantage of internal hardware investment in the form of a private cloud. The private cloud obviously solves some of the issues around security and data transfers, at the cost of limited capacity. But throw in the ability to seamlessly burst to nominated public clouds and you have something pretty compelling indeed. Below is an example of how this can be implemented effectively.

 GreenButton Cloud

Conclusion

Not only is the cloud an ideal platform for many HPC (and non-“HPC”) workloads today, but current limitations are constantly being whittled away by the platform providers themselves or by software vendors such as GreenButton. There is a common perception that HPC is so complex and expensive that ordinary businesses are not able to tap into the massive benefits and business value that can be obtained.  With the advent of the cloud HPC is accessible and affordable to the mass market for any type of application. Do your research to find the solutions that work best for you!

Dave Fellow, CTO, GreenButton™

 

 

Dave Fellows, CTO, GreenButtonAbout the Author

Dave Fellows is the Chief Technology Officer of GreenButton ™ Limited. Dave has extensive experience designing massively scalable PaaS applications in a variety of technology industries. He has a passion for the Cloud and High Performance Computing (HPC) and creating innovative technologies to bring unique and compelling solutions to GreenButton’s global customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This