Why the Cloud is Ideal for HPC

By Nicole Hemsoth

September 5, 2013

Cloud computing has emerged as a model to address a broad range of computing needs and promises to solve all but world peace. The idea of utility or on-demand computing is hardly new but the business models and technology have matured sufficiently to propel the concept firmly back into the limelight. High Performance Computing (HPC) is where most progressive businesses should be focusing their Big Data and Big Compute efforts.

Unfortunately, some companies pigeon hole HPC as scientists geeking out with massive supercomputers. However, there is a far more significant market evolving outside of traditional HPC with growing computational needs. Big Data and Big Compute is an excellent example where the opportunity for deep analytical insight is an extremely attractive proposition to a wide range of vertical markets. This new segment of the market is often referred to as the “Missing Middle,” and disruptive technology solutions such as those offered by GreenButton put supercomputing power within progressive companies’ reach.

With effective job management as demonstrated below, thousands of HPC activities can be managed by companies such as GreenButton though innovative technology and simple to use web interfaces.

 GreenButton Web Interface

Keep in mind, when we talk about HPC in the cloud, it’s important to remember that cloud computing is ultimately a business model, not a technology. However, there are a common set of technical capabilities (e.g. virtualization) that are realized in the cloud, and these, as well as the business model provide certain benefits or challenges to HPC applications.

The Positives

CFO’s Pay Attention to this!!

Cost: For spikey workloads, the cost savings in the cloud can be significant. What’s more, the cost is an Operational Expense rather than Cap-Ex so is often more palatable for many businesses as costs can be attributed to a particular project.

Ease of use: The cloud can make dynamic provisioning of specified workloads very easy. The ability to have OS/Software configurations particular to a workload is a key advantage.

Speed of deployment: The ability to rapidly provision new environments/clusters in minutes is incredibly valuable to many businesses.

Scalability: Elastically scaling out to meet increased capacity demands is a powerful concept. The public cloud promises “infinite” scale. The reality is somewhat different: there are some real limits even in the cloud. But the computing capacity that you can get from large providers such as AWS and Azure is far greater than what most customers can fathom with internal hardware. Some companies – such as GreenButton work with a variety of cloud providers such as Windows Azure, HP Cloud Services, OpenStack, Amazon Web Services, and VMware for global access to resources.

 GreenButton Map

Resiliency: The ability to snapshot workloads as they are running can allow for check-pointing of MPI workloads. Combine this with active monitoring and the ability to dynamically move a guest VM from one physical host to another, and your workloads can keep running even in the face of hardware failure.

Portability: The ability to move a workload from one cloud platform to another on the fly without any application changes presents powerful options such as for bursting from a private cloud out to a public cloud, High Availability where a workload is run on multiple clouds simultaneously, scaling across multiple clouds to meet extremely high resource requirements or, to take advantage of shifts in the spot pricing market.

Challenges

Security: this remains a significant barrier to adoption today, but the issue is primarily in trust and perception rather than real limitations of the cloud platforms. One could argue that in some cases your data is safer in the hands of Amazon or Microsoft than your own data center. That said, data isn’t sufficiently secure by default so some effort commensurate to the sensitivity and risks needs to be applied. For example;

  • Encryption at rest of cloud-bound data.
  • Limiting the time window that data is resident in the cloud.
  • Anonymizing data. A great example is running risk models for the financial services sector where sensitive customer data can easily be stripped out prior to sending to the cloud.

Performance: There is no single answer to the question of performance, though in general the cloud offers massive performance gains in most cases (and therefore is generally a positive), this does depend on the workload in question and presents some challenges today.

Some workloads scale in a linear fashion i.e. embarrassingly parallel, and these scale extremely well to the cloud. Even many MPI workloads scale perfectly well on cloud infrastructure.

However, I/O bound MPI processes will often run into performance challenges due to their heavy demands on network infrastructure or sensitivity to latency. Many traditional HPC applications are tuned for very low-latency Infiniband interconnects and take advantage of RDMA technology. These applications just won’t scale on the 10 GigE networks within the cloud.   This will change as cloud providers roll out Infiniband or RDMA over Ethernet but for the time being remains an issue.

Other challenges lie in certain cloud platforms intentionally distributing your deployed instances across the data center to increase availability. This can negatively affect performance through increased latency. But this is increasingly being rectified with increased control over physical placement of VMs – e.g. AWS Placement Groups.

I’m not going to dwell on the overhead of virtualization as there is a lot of material on the web covering this topic. I will say that modern virtualization technologies have such a small overhead on CPU performance today that it is effectively negligible. The I/O hit in some cases can be more noticeable but this depends on the characteristics of the workload. Josh Simons of VMware has posted extensively about this so check out his posts at http://cto.vmware.com/author/joshsimons/

Management: One of the challenges when spreading workloads across more than one platform is management of the workloads and resources being utilized. Being able to consolidate management within a single tool becomes critical for effective use of the cloud.

Data: Moving large datasets to the cloud still presents some challenges. In the Oil & Gas sector we physically ship 50TB+ to AWS where it undergoes weeks/months of processing, and the entire workflow lives in the cloud using visualization technology. RenderMan workloads also present challenges with large datasets (up to 1GB per frame). There are also technologies such as Aspera or GreenButton’s own CloudSync which optimize throughput over the internet.

Managing Costs: There is obviously some level of fear when moving from a known and understood capital expenditure model to one of pay-by-the-drink where costs could spiral out of control. Trust me, this has many CFOs awake at night in a cold sweat. At GreenButton, we’ve addressed this by predicting job execution time and committing to users on runtime and cost. We also support cost monitoring and chargebacks down to the departmental or user level so the CFO never has to get any nasty surprises!

Cloud Lock-in:   Different cloud vendors have different APIs and deployment mechanisms, so you may be concerned about being locked into a particular cloud and being unable to take advantage of improved pricing or services becoming available in other clouds.  I’ve written about how to avoid cloud lock-in before so I won’t repeat it here!

Cloud Bursting

One advantage of moving HPC workloads to on-demand virtualized infrastructure is that Enterprise customers can take advantage of internal hardware investment in the form of a private cloud. The private cloud obviously solves some of the issues around security and data transfers, at the cost of limited capacity. But throw in the ability to seamlessly burst to nominated public clouds and you have something pretty compelling indeed. Below is an example of how this can be implemented effectively.

 GreenButton Cloud

Conclusion

Not only is the cloud an ideal platform for many HPC (and non-“HPC”) workloads today, but current limitations are constantly being whittled away by the platform providers themselves or by software vendors such as GreenButton. There is a common perception that HPC is so complex and expensive that ordinary businesses are not able to tap into the massive benefits and business value that can be obtained.  With the advent of the cloud HPC is accessible and affordable to the mass market for any type of application. Do your research to find the solutions that work best for you!

Dave Fellow, CTO, GreenButton™

 

 

Dave Fellows, CTO, GreenButtonAbout the Author

Dave Fellows is the Chief Technology Officer of GreenButton ™ Limited. Dave has extensive experience designing massively scalable PaaS applications in a variety of technology industries. He has a passion for the Cloud and High Performance Computing (HPC) and creating innovative technologies to bring unique and compelling solutions to GreenButton’s global customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This