Why the Cloud is Ideal for HPC

By Nicole Hemsoth

September 5, 2013

Cloud computing has emerged as a model to address a broad range of computing needs and promises to solve all but world peace. The idea of utility or on-demand computing is hardly new but the business models and technology have matured sufficiently to propel the concept firmly back into the limelight. High Performance Computing (HPC) is where most progressive businesses should be focusing their Big Data and Big Compute efforts.

Unfortunately, some companies pigeon hole HPC as scientists geeking out with massive supercomputers. However, there is a far more significant market evolving outside of traditional HPC with growing computational needs. Big Data and Big Compute is an excellent example where the opportunity for deep analytical insight is an extremely attractive proposition to a wide range of vertical markets. This new segment of the market is often referred to as the “Missing Middle,” and disruptive technology solutions such as those offered by GreenButton put supercomputing power within progressive companies’ reach.

With effective job management as demonstrated below, thousands of HPC activities can be managed by companies such as GreenButton though innovative technology and simple to use web interfaces.

 GreenButton Web Interface

Keep in mind, when we talk about HPC in the cloud, it’s important to remember that cloud computing is ultimately a business model, not a technology. However, there are a common set of technical capabilities (e.g. virtualization) that are realized in the cloud, and these, as well as the business model provide certain benefits or challenges to HPC applications.

The Positives

CFO’s Pay Attention to this!!

Cost: For spikey workloads, the cost savings in the cloud can be significant. What’s more, the cost is an Operational Expense rather than Cap-Ex so is often more palatable for many businesses as costs can be attributed to a particular project.

Ease of use: The cloud can make dynamic provisioning of specified workloads very easy. The ability to have OS/Software configurations particular to a workload is a key advantage.

Speed of deployment: The ability to rapidly provision new environments/clusters in minutes is incredibly valuable to many businesses.

Scalability: Elastically scaling out to meet increased capacity demands is a powerful concept. The public cloud promises “infinite” scale. The reality is somewhat different: there are some real limits even in the cloud. But the computing capacity that you can get from large providers such as AWS and Azure is far greater than what most customers can fathom with internal hardware. Some companies – such as GreenButton work with a variety of cloud providers such as Windows Azure, HP Cloud Services, OpenStack, Amazon Web Services, and VMware for global access to resources.

 GreenButton Map

Resiliency: The ability to snapshot workloads as they are running can allow for check-pointing of MPI workloads. Combine this with active monitoring and the ability to dynamically move a guest VM from one physical host to another, and your workloads can keep running even in the face of hardware failure.

Portability: The ability to move a workload from one cloud platform to another on the fly without any application changes presents powerful options such as for bursting from a private cloud out to a public cloud, High Availability where a workload is run on multiple clouds simultaneously, scaling across multiple clouds to meet extremely high resource requirements or, to take advantage of shifts in the spot pricing market.


Security: this remains a significant barrier to adoption today, but the issue is primarily in trust and perception rather than real limitations of the cloud platforms. One could argue that in some cases your data is safer in the hands of Amazon or Microsoft than your own data center. That said, data isn’t sufficiently secure by default so some effort commensurate to the sensitivity and risks needs to be applied. For example;

  • Encryption at rest of cloud-bound data.
  • Limiting the time window that data is resident in the cloud.
  • Anonymizing data. A great example is running risk models for the financial services sector where sensitive customer data can easily be stripped out prior to sending to the cloud.

Performance: There is no single answer to the question of performance, though in general the cloud offers massive performance gains in most cases (and therefore is generally a positive), this does depend on the workload in question and presents some challenges today.

Some workloads scale in a linear fashion i.e. embarrassingly parallel, and these scale extremely well to the cloud. Even many MPI workloads scale perfectly well on cloud infrastructure.

However, I/O bound MPI processes will often run into performance challenges due to their heavy demands on network infrastructure or sensitivity to latency. Many traditional HPC applications are tuned for very low-latency Infiniband interconnects and take advantage of RDMA technology. These applications just won’t scale on the 10 GigE networks within the cloud.   This will change as cloud providers roll out Infiniband or RDMA over Ethernet but for the time being remains an issue.

Other challenges lie in certain cloud platforms intentionally distributing your deployed instances across the data center to increase availability. This can negatively affect performance through increased latency. But this is increasingly being rectified with increased control over physical placement of VMs – e.g. AWS Placement Groups.

I’m not going to dwell on the overhead of virtualization as there is a lot of material on the web covering this topic. I will say that modern virtualization technologies have such a small overhead on CPU performance today that it is effectively negligible. The I/O hit in some cases can be more noticeable but this depends on the characteristics of the workload. Josh Simons of VMware has posted extensively about this so check out his posts at http://cto.vmware.com/author/joshsimons/

Management: One of the challenges when spreading workloads across more than one platform is management of the workloads and resources being utilized. Being able to consolidate management within a single tool becomes critical for effective use of the cloud.

Data: Moving large datasets to the cloud still presents some challenges. In the Oil & Gas sector we physically ship 50TB+ to AWS where it undergoes weeks/months of processing, and the entire workflow lives in the cloud using visualization technology. RenderMan workloads also present challenges with large datasets (up to 1GB per frame). There are also technologies such as Aspera or GreenButton’s own CloudSync which optimize throughput over the internet.

Managing Costs: There is obviously some level of fear when moving from a known and understood capital expenditure model to one of pay-by-the-drink where costs could spiral out of control. Trust me, this has many CFOs awake at night in a cold sweat. At GreenButton, we’ve addressed this by predicting job execution time and committing to users on runtime and cost. We also support cost monitoring and chargebacks down to the departmental or user level so the CFO never has to get any nasty surprises!

Cloud Lock-in:   Different cloud vendors have different APIs and deployment mechanisms, so you may be concerned about being locked into a particular cloud and being unable to take advantage of improved pricing or services becoming available in other clouds.  I’ve written about how to avoid cloud lock-in before so I won’t repeat it here!

Cloud Bursting

One advantage of moving HPC workloads to on-demand virtualized infrastructure is that Enterprise customers can take advantage of internal hardware investment in the form of a private cloud. The private cloud obviously solves some of the issues around security and data transfers, at the cost of limited capacity. But throw in the ability to seamlessly burst to nominated public clouds and you have something pretty compelling indeed. Below is an example of how this can be implemented effectively.

 GreenButton Cloud


Not only is the cloud an ideal platform for many HPC (and non-“HPC”) workloads today, but current limitations are constantly being whittled away by the platform providers themselves or by software vendors such as GreenButton. There is a common perception that HPC is so complex and expensive that ordinary businesses are not able to tap into the massive benefits and business value that can be obtained.  With the advent of the cloud HPC is accessible and affordable to the mass market for any type of application. Do your research to find the solutions that work best for you!

Dave Fellow, CTO, GreenButton™



Dave Fellows, CTO, GreenButtonAbout the Author

Dave Fellows is the Chief Technology Officer of GreenButton ™ Limited. Dave has extensive experience designing massively scalable PaaS applications in a variety of technology industries. He has a passion for the Cloud and High Performance Computing (HPC) and creating innovative technologies to bring unique and compelling solutions to GreenButton’s global customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Launches Apollo 6500 Gen10 System as Part of AI Solution Push

March 21, 2018

HPE today announced the latest rev of its HPE Apollo 6500 platform, Gen10, along with a spate of new AI-oriented offerings designed to help customers optimize and scale up their AI and deep learning usage. Like is Gen Read more…

By Tiffany Trader

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after several years of expectations, be the year OpenPOWER and IBM’ Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

HPE Extreme Performance Solutions

Harness the Full Power of HPC Servers with an Effective Cooling Approach

High performance computing (HPC) innovation is rapidly transforming the way we operate – with an onslaught of cutting-edge technologies designed to optimize applications and workloads, increase productivity, and enable better business outcomes. Read more…

IBM Unveils New Cloud for Data Science and Engineering

March 19, 2018

Days ahead of its inaugural IBM Think mega-event, the multinational tech mainstay on Friday (March 16) unveiled a new cloud offering called Cloud Private Data that’s designed to help organizations utilize data science Read more…

By Alex Woodie

HPE Launches Apollo 6500 Gen10 System as Part of AI Solution Push

March 21, 2018

HPE today announced the latest rev of its HPE Apollo 6500 platform, Gen10, along with a spate of new AI-oriented offerings designed to help customers optimize a Read more…

By Tiffany Trader

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after sev Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This