Why the Cloud is Ideal for HPC

By Nicole Hemsoth

September 5, 2013

Cloud computing has emerged as a model to address a broad range of computing needs and promises to solve all but world peace. The idea of utility or on-demand computing is hardly new but the business models and technology have matured sufficiently to propel the concept firmly back into the limelight. High Performance Computing (HPC) is where most progressive businesses should be focusing their Big Data and Big Compute efforts.

Unfortunately, some companies pigeon hole HPC as scientists geeking out with massive supercomputers. However, there is a far more significant market evolving outside of traditional HPC with growing computational needs. Big Data and Big Compute is an excellent example where the opportunity for deep analytical insight is an extremely attractive proposition to a wide range of vertical markets. This new segment of the market is often referred to as the “Missing Middle,” and disruptive technology solutions such as those offered by GreenButton put supercomputing power within progressive companies’ reach.

With effective job management as demonstrated below, thousands of HPC activities can be managed by companies such as GreenButton though innovative technology and simple to use web interfaces.

 GreenButton Web Interface

Keep in mind, when we talk about HPC in the cloud, it’s important to remember that cloud computing is ultimately a business model, not a technology. However, there are a common set of technical capabilities (e.g. virtualization) that are realized in the cloud, and these, as well as the business model provide certain benefits or challenges to HPC applications.

The Positives

CFO’s Pay Attention to this!!

Cost: For spikey workloads, the cost savings in the cloud can be significant. What’s more, the cost is an Operational Expense rather than Cap-Ex so is often more palatable for many businesses as costs can be attributed to a particular project.

Ease of use: The cloud can make dynamic provisioning of specified workloads very easy. The ability to have OS/Software configurations particular to a workload is a key advantage.

Speed of deployment: The ability to rapidly provision new environments/clusters in minutes is incredibly valuable to many businesses.

Scalability: Elastically scaling out to meet increased capacity demands is a powerful concept. The public cloud promises “infinite” scale. The reality is somewhat different: there are some real limits even in the cloud. But the computing capacity that you can get from large providers such as AWS and Azure is far greater than what most customers can fathom with internal hardware. Some companies – such as GreenButton work with a variety of cloud providers such as Windows Azure, HP Cloud Services, OpenStack, Amazon Web Services, and VMware for global access to resources.

 GreenButton Map

Resiliency: The ability to snapshot workloads as they are running can allow for check-pointing of MPI workloads. Combine this with active monitoring and the ability to dynamically move a guest VM from one physical host to another, and your workloads can keep running even in the face of hardware failure.

Portability: The ability to move a workload from one cloud platform to another on the fly without any application changes presents powerful options such as for bursting from a private cloud out to a public cloud, High Availability where a workload is run on multiple clouds simultaneously, scaling across multiple clouds to meet extremely high resource requirements or, to take advantage of shifts in the spot pricing market.

Challenges

Security: this remains a significant barrier to adoption today, but the issue is primarily in trust and perception rather than real limitations of the cloud platforms. One could argue that in some cases your data is safer in the hands of Amazon or Microsoft than your own data center. That said, data isn’t sufficiently secure by default so some effort commensurate to the sensitivity and risks needs to be applied. For example;

  • Encryption at rest of cloud-bound data.
  • Limiting the time window that data is resident in the cloud.
  • Anonymizing data. A great example is running risk models for the financial services sector where sensitive customer data can easily be stripped out prior to sending to the cloud.

Performance: There is no single answer to the question of performance, though in general the cloud offers massive performance gains in most cases (and therefore is generally a positive), this does depend on the workload in question and presents some challenges today.

Some workloads scale in a linear fashion i.e. embarrassingly parallel, and these scale extremely well to the cloud. Even many MPI workloads scale perfectly well on cloud infrastructure.

However, I/O bound MPI processes will often run into performance challenges due to their heavy demands on network infrastructure or sensitivity to latency. Many traditional HPC applications are tuned for very low-latency Infiniband interconnects and take advantage of RDMA technology. These applications just won’t scale on the 10 GigE networks within the cloud.   This will change as cloud providers roll out Infiniband or RDMA over Ethernet but for the time being remains an issue.

Other challenges lie in certain cloud platforms intentionally distributing your deployed instances across the data center to increase availability. This can negatively affect performance through increased latency. But this is increasingly being rectified with increased control over physical placement of VMs – e.g. AWS Placement Groups.

I’m not going to dwell on the overhead of virtualization as there is a lot of material on the web covering this topic. I will say that modern virtualization technologies have such a small overhead on CPU performance today that it is effectively negligible. The I/O hit in some cases can be more noticeable but this depends on the characteristics of the workload. Josh Simons of VMware has posted extensively about this so check out his posts at http://cto.vmware.com/author/joshsimons/

Management: One of the challenges when spreading workloads across more than one platform is management of the workloads and resources being utilized. Being able to consolidate management within a single tool becomes critical for effective use of the cloud.

Data: Moving large datasets to the cloud still presents some challenges. In the Oil & Gas sector we physically ship 50TB+ to AWS where it undergoes weeks/months of processing, and the entire workflow lives in the cloud using visualization technology. RenderMan workloads also present challenges with large datasets (up to 1GB per frame). There are also technologies such as Aspera or GreenButton’s own CloudSync which optimize throughput over the internet.

Managing Costs: There is obviously some level of fear when moving from a known and understood capital expenditure model to one of pay-by-the-drink where costs could spiral out of control. Trust me, this has many CFOs awake at night in a cold sweat. At GreenButton, we’ve addressed this by predicting job execution time and committing to users on runtime and cost. We also support cost monitoring and chargebacks down to the departmental or user level so the CFO never has to get any nasty surprises!

Cloud Lock-in:   Different cloud vendors have different APIs and deployment mechanisms, so you may be concerned about being locked into a particular cloud and being unable to take advantage of improved pricing or services becoming available in other clouds.  I’ve written about how to avoid cloud lock-in before so I won’t repeat it here!

Cloud Bursting

One advantage of moving HPC workloads to on-demand virtualized infrastructure is that Enterprise customers can take advantage of internal hardware investment in the form of a private cloud. The private cloud obviously solves some of the issues around security and data transfers, at the cost of limited capacity. But throw in the ability to seamlessly burst to nominated public clouds and you have something pretty compelling indeed. Below is an example of how this can be implemented effectively.

 GreenButton Cloud

Conclusion

Not only is the cloud an ideal platform for many HPC (and non-“HPC”) workloads today, but current limitations are constantly being whittled away by the platform providers themselves or by software vendors such as GreenButton. There is a common perception that HPC is so complex and expensive that ordinary businesses are not able to tap into the massive benefits and business value that can be obtained.  With the advent of the cloud HPC is accessible and affordable to the mass market for any type of application. Do your research to find the solutions that work best for you!

Dave Fellow, CTO, GreenButton™

 

 

Dave Fellows, CTO, GreenButtonAbout the Author

Dave Fellows is the Chief Technology Officer of GreenButton ™ Limited. Dave has extensive experience designing massively scalable PaaS applications in a variety of technology industries. He has a passion for the Cloud and High Performance Computing (HPC) and creating innovative technologies to bring unique and compelling solutions to GreenButton’s global customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This