Accelerate Hadoop MapReduce Performance using Dedicated OrangeFS Servers

By Nicole Hemsoth

September 9, 2013

Recent tests performed at Clemson University achieved a 25 percent improvement in Apache Hadoop Terasort run times by replacing Hadoop Distributed File System (HDFS) with an OrangeFS configuration using dedicated servers. Key components included extension of the MapReduce “FileSystem” class and a Java Native Interface (JNI) shim to the OrangeFS client. No modifications of Hadoop were required, and existing MapReduce jobs require no modification to utilize OrangeFS. The results also demonstrated the ability to deploy MapReduce with a general purpose High Performance file system in a High Performance Computing (HPC) environment, increasing potential for more flexible workflow.

The open source Hadoop MapReduce project has a traditional hardware architecture that differs from standard HPC architecture, where thin clients access remote, shared, and potentially distributed data servers. With HDFS, clients and data servers are paired together, running on the same hardware. Many HPC sites would like to extend their cluster use to support Hadoop MapReduce. With OrangeFS providing distributed storage as part of HPC clusters, they could leverage their existing investment in HPC to run Hadoop MapReduce workloads.

Through testing this configuration, a number of benefits emerged:

  • MapReduce clients accessing a dedicated OrangeFS storage cluster yielded a 25 percent faster combined run time than the traditional approach, where MapReduce clients access data locally for the three operations (teragen, terasort, and teravalidate).
  • OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system. With a general purpose file system, applications can read and write data to OrangeFS while it remains available for Hadoop MapReduce job input, improving run time by eliminating time-consuming HDFS stage-in and stage-out operations.
  • Doubling the number of compute nodes accessing the OrangeFS cluster results in ~300 percent improvement on Terasort job run time.
  • OrangeFS provides good results when clients significantly overcommit storage servers.

About OrangeFS

OrangeFS is a user-friendly, open-source, next-generation parallel file system for compute and storage clusters of the future. OrangeFS increases IO performance by storing a file in objects across multiple servers and accessing these objects in parallel. Offering more feature rich data access and manipulation than HDFS, OrangeFS is an ideal tool for storing, processing and analyzing data with MapReduce. A staff of developers support OrangeFS, improving stability and functionality for the base system and developing new interfaces.

OrangeFS has an object-based infrastructure. Each file and directory consists of two or more objects: one primarily containing file metadata, and the other(s) primarily containing file data. Objects may contain both data and metadata as needed to fulfill their role in the file system. This division and distribution of data to the servers is imperceptible to users, who see a traditional, logical file view. The OrangeFS distributed file structure provides outstanding scalability in performance and capacity.

OrangeFS client interfaces work with a range of operating systems, including Linux, Mac OS X and Windows. Compatible client interfaces include Direct Interface, WebDAV, S3, REST, FUSE, Hadoop and MPI-IO.

OrangeFS with Hadoop MapReduce

Hadoop’s abstract FileSystem class allows MapReduce to leverage file systems other than HDFS, with a configuration file that sets the designated file system. Hadoop MapReduce is written in Java, but OrangeFS’s client libraries are written in C. A Java Native Interface (JNI) shim allows data to be passed between programs, avoiding the overhead of memory copies with Java’s NIO Direct ByteBuffer. The JNI shim allows Java code to execute functions present in the OrangeFS Direct Client Interface. The OrangeFS Direct Client Interface Library is a collection of familiar POSIX-like and system standard input/output (stdio.h) library calls designed for parallel access to OrangeFS. OrangeFS differs from HDFS in that it allows modification of data after the initial write.

The Terasort benchmarks successfully explored potential for replacing HDFS with the prerelease version 2.8.8 of OrangeFS, working with the Hadoop 1.x stable release. The two Hadoop configurations which were evaluated are shown in Figure 1.

File System Test Configuration 

Figure 1 Test Configurations

Test Protocols

Hadoop MapReduce File System Test (Figure 2)

To test the impact of replacing HDFS with OrangeFS, developers performed a full terabyte (1 TB) Terasort benchmark on 8 nodes, each running both MapReduce and the file system shown in the first configuration above. The tests were performed on 8 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. In this test, MapReduce ran locally on the same nodes, first over OrangeFS and then over HDFS, interconnected with 10Gb/s Ethernet. Both file systems used the compute nodes for storage as well.

Hadoop MapReduce Remote Client Test

Using the same benchmarks with typical HPC storage architecture, another test, “OFS Remote” in Figure 2, measured how MapReduce performs when data is stored on dedicated, network-connected storage nodes running OrangeFS. Eight additional nodes were used as MapReduce clients, and eight Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data were used as storage nodes only, shown in the Remote Client Test Configuration in Figure 1.

Results

OrangeFS decreased Terasort run time in the dedicated OrangeFS storage cluster architecture by about 25 percent over the traditional MapReduce architecture, where clients access data from local disks. OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system.

Figure 2 Hadoop MapReduce File System Test 

Figure 2 Hadoop MapReduce File System Test

Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers (Figure 3)

A separate test evaluated MapReduce over OrangeFS, overcommitting the storage nodes and evaluating how well this approach scales with more MapReduce clients than storage nodes. The Terasort test was performed with an increasing number of clients utilizing a dedicated OrangeFS cluster composed of 16 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. The Hadoop client nodes had only a single hard disk drive available for intermediate data storage purposes, increasing the time over previous tests where Hadoop clients possessed 12 disks. If the clients used a solid state drive (SSD) for storage and retrieval of intermediate data instead, the slowdown caused by the single disk compared to an array of disks would be alleviated to some extent.

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers 

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers

Results

In testing 16, 32, and 64 compute nodes, doubling the number of compute nodes caused a ~300 percent improvement on Terasort job run time. OrangeFS provides good results when clients significantly overcommit the storage servers (4 to 1 in these tests). While providing improvements as a good general purpose file system for MapReduce, OrangeFS is also an excellent concurrent working file system to support the storage needs of other applications while simultaneously serving Hadoop MapReduce.

Benefits

  • OrangeFS enables modification of data anywhere in a file, while HDFS requires copying data before modification, except in the case of Append in the Hadoop 2.x release.
  • OrangeFS replaces the HDFS single namenode with multiple OrangeFS metadata/data servers, reducing task time with improved scalability and eliminating this single point of contention.
  • Potentially, intermediate data can also be written to OrangeFS rather than a temporary folder on each Hadoop client disk, optionally retaining it for use in future jobs and further improving performance with OrangeFS serving the data to MapReduce.

Obstacles

  • Unlike HDFS, OrangeFS doesn’t currently support built-in replication. (OrangeFS can be run in High Availability (HA) mode, and plans for the 3.0 release of OrangeFS include integrated replication for both data and metadata.)
  • OrangeFS and Hadoop are separate installations which must be configured to work together. (Plans for the 2.8.8 release of OrangeFS include a more comprehensive documentation set, including instructions for using Hadoop’s MapReduce with the OrangeFS file system.)

Conclusion

The results demonstrated that replacing HDFS with OrangeFS produced better MapReduce performance for workloads with high volumes of intermediate data, i.e., terasort.

Separating MapReduce clients from storage servers can provide stability in the case of client failure, without the overhead of replication, and eases local disk contention during the reduce stage.

Hadoop MapReduce can leverage OrangeFS as its underlying storage system in an HPC environment. A Portable Batch System (PBS) or Sun Grid Engine (SGE) scheduled HPC environment can support on-demand Hadoop MapReduce clusters deployed and configured automatically, using the open source project “myHadoop.” Researchers could customize a version of myHadoop to schedule on-demand MapReduce clusters, with data persisting on OrangeFS, eliminating HDFS’s time consuming data stage-in and stage-out phases. (myHadoop scripts will be available with the next release of OrangeFS, for running jobs in a scheduled environment.)

Future evaluations may test how performance could be improved, since Hadoop Map and Reduce tasks could be patched to support reading and writing intermediate data to OrangeFS, rather than local disk, improving job run time with faster I/O rates.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This