Accelerate Hadoop MapReduce Performance using Dedicated OrangeFS Servers

By Nicole Hemsoth

September 9, 2013

Recent tests performed at Clemson University achieved a 25 percent improvement in Apache Hadoop Terasort run times by replacing Hadoop Distributed File System (HDFS) with an OrangeFS configuration using dedicated servers. Key components included extension of the MapReduce “FileSystem” class and a Java Native Interface (JNI) shim to the OrangeFS client. No modifications of Hadoop were required, and existing MapReduce jobs require no modification to utilize OrangeFS. The results also demonstrated the ability to deploy MapReduce with a general purpose High Performance file system in a High Performance Computing (HPC) environment, increasing potential for more flexible workflow.

The open source Hadoop MapReduce project has a traditional hardware architecture that differs from standard HPC architecture, where thin clients access remote, shared, and potentially distributed data servers. With HDFS, clients and data servers are paired together, running on the same hardware. Many HPC sites would like to extend their cluster use to support Hadoop MapReduce. With OrangeFS providing distributed storage as part of HPC clusters, they could leverage their existing investment in HPC to run Hadoop MapReduce workloads.

Through testing this configuration, a number of benefits emerged:

  • MapReduce clients accessing a dedicated OrangeFS storage cluster yielded a 25 percent faster combined run time than the traditional approach, where MapReduce clients access data locally for the three operations (teragen, terasort, and teravalidate).
  • OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system. With a general purpose file system, applications can read and write data to OrangeFS while it remains available for Hadoop MapReduce job input, improving run time by eliminating time-consuming HDFS stage-in and stage-out operations.
  • Doubling the number of compute nodes accessing the OrangeFS cluster results in ~300 percent improvement on Terasort job run time.
  • OrangeFS provides good results when clients significantly overcommit storage servers.

About OrangeFS

OrangeFS is a user-friendly, open-source, next-generation parallel file system for compute and storage clusters of the future. OrangeFS increases IO performance by storing a file in objects across multiple servers and accessing these objects in parallel. Offering more feature rich data access and manipulation than HDFS, OrangeFS is an ideal tool for storing, processing and analyzing data with MapReduce. A staff of developers support OrangeFS, improving stability and functionality for the base system and developing new interfaces.

OrangeFS has an object-based infrastructure. Each file and directory consists of two or more objects: one primarily containing file metadata, and the other(s) primarily containing file data. Objects may contain both data and metadata as needed to fulfill their role in the file system. This division and distribution of data to the servers is imperceptible to users, who see a traditional, logical file view. The OrangeFS distributed file structure provides outstanding scalability in performance and capacity.

OrangeFS client interfaces work with a range of operating systems, including Linux, Mac OS X and Windows. Compatible client interfaces include Direct Interface, WebDAV, S3, REST, FUSE, Hadoop and MPI-IO.

OrangeFS with Hadoop MapReduce

Hadoop’s abstract FileSystem class allows MapReduce to leverage file systems other than HDFS, with a configuration file that sets the designated file system. Hadoop MapReduce is written in Java, but OrangeFS’s client libraries are written in C. A Java Native Interface (JNI) shim allows data to be passed between programs, avoiding the overhead of memory copies with Java’s NIO Direct ByteBuffer. The JNI shim allows Java code to execute functions present in the OrangeFS Direct Client Interface. The OrangeFS Direct Client Interface Library is a collection of familiar POSIX-like and system standard input/output (stdio.h) library calls designed for parallel access to OrangeFS. OrangeFS differs from HDFS in that it allows modification of data after the initial write.

The Terasort benchmarks successfully explored potential for replacing HDFS with the prerelease version 2.8.8 of OrangeFS, working with the Hadoop 1.x stable release. The two Hadoop configurations which were evaluated are shown in Figure 1.

File System Test Configuration 

Figure 1 Test Configurations

Test Protocols

Hadoop MapReduce File System Test (Figure 2)

To test the impact of replacing HDFS with OrangeFS, developers performed a full terabyte (1 TB) Terasort benchmark on 8 nodes, each running both MapReduce and the file system shown in the first configuration above. The tests were performed on 8 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. In this test, MapReduce ran locally on the same nodes, first over OrangeFS and then over HDFS, interconnected with 10Gb/s Ethernet. Both file systems used the compute nodes for storage as well.

Hadoop MapReduce Remote Client Test

Using the same benchmarks with typical HPC storage architecture, another test, “OFS Remote” in Figure 2, measured how MapReduce performs when data is stored on dedicated, network-connected storage nodes running OrangeFS. Eight additional nodes were used as MapReduce clients, and eight Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data were used as storage nodes only, shown in the Remote Client Test Configuration in Figure 1.

Results

OrangeFS decreased Terasort run time in the dedicated OrangeFS storage cluster architecture by about 25 percent over the traditional MapReduce architecture, where clients access data from local disks. OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system.

Figure 2 Hadoop MapReduce File System Test 

Figure 2 Hadoop MapReduce File System Test

Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers (Figure 3)

A separate test evaluated MapReduce over OrangeFS, overcommitting the storage nodes and evaluating how well this approach scales with more MapReduce clients than storage nodes. The Terasort test was performed with an increasing number of clients utilizing a dedicated OrangeFS cluster composed of 16 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. The Hadoop client nodes had only a single hard disk drive available for intermediate data storage purposes, increasing the time over previous tests where Hadoop clients possessed 12 disks. If the clients used a solid state drive (SSD) for storage and retrieval of intermediate data instead, the slowdown caused by the single disk compared to an array of disks would be alleviated to some extent.

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers 

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers

Results

In testing 16, 32, and 64 compute nodes, doubling the number of compute nodes caused a ~300 percent improvement on Terasort job run time. OrangeFS provides good results when clients significantly overcommit the storage servers (4 to 1 in these tests). While providing improvements as a good general purpose file system for MapReduce, OrangeFS is also an excellent concurrent working file system to support the storage needs of other applications while simultaneously serving Hadoop MapReduce.

Benefits

  • OrangeFS enables modification of data anywhere in a file, while HDFS requires copying data before modification, except in the case of Append in the Hadoop 2.x release.
  • OrangeFS replaces the HDFS single namenode with multiple OrangeFS metadata/data servers, reducing task time with improved scalability and eliminating this single point of contention.
  • Potentially, intermediate data can also be written to OrangeFS rather than a temporary folder on each Hadoop client disk, optionally retaining it for use in future jobs and further improving performance with OrangeFS serving the data to MapReduce.

Obstacles

  • Unlike HDFS, OrangeFS doesn’t currently support built-in replication. (OrangeFS can be run in High Availability (HA) mode, and plans for the 3.0 release of OrangeFS include integrated replication for both data and metadata.)
  • OrangeFS and Hadoop are separate installations which must be configured to work together. (Plans for the 2.8.8 release of OrangeFS include a more comprehensive documentation set, including instructions for using Hadoop’s MapReduce with the OrangeFS file system.)

Conclusion

The results demonstrated that replacing HDFS with OrangeFS produced better MapReduce performance for workloads with high volumes of intermediate data, i.e., terasort.

Separating MapReduce clients from storage servers can provide stability in the case of client failure, without the overhead of replication, and eases local disk contention during the reduce stage.

Hadoop MapReduce can leverage OrangeFS as its underlying storage system in an HPC environment. A Portable Batch System (PBS) or Sun Grid Engine (SGE) scheduled HPC environment can support on-demand Hadoop MapReduce clusters deployed and configured automatically, using the open source project “myHadoop.” Researchers could customize a version of myHadoop to schedule on-demand MapReduce clusters, with data persisting on OrangeFS, eliminating HDFS’s time consuming data stage-in and stage-out phases. (myHadoop scripts will be available with the next release of OrangeFS, for running jobs in a scheduled environment.)

Future evaluations may test how performance could be improved, since Hadoop Map and Reduce tasks could be patched to support reading and writing intermediate data to OrangeFS, rather than local disk, improving job run time with faster I/O rates.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This