Accelerate Hadoop MapReduce Performance using Dedicated OrangeFS Servers

By Nicole Hemsoth

September 9, 2013

Recent tests performed at Clemson University achieved a 25 percent improvement in Apache Hadoop Terasort run times by replacing Hadoop Distributed File System (HDFS) with an OrangeFS configuration using dedicated servers. Key components included extension of the MapReduce “FileSystem” class and a Java Native Interface (JNI) shim to the OrangeFS client. No modifications of Hadoop were required, and existing MapReduce jobs require no modification to utilize OrangeFS. The results also demonstrated the ability to deploy MapReduce with a general purpose High Performance file system in a High Performance Computing (HPC) environment, increasing potential for more flexible workflow.

The open source Hadoop MapReduce project has a traditional hardware architecture that differs from standard HPC architecture, where thin clients access remote, shared, and potentially distributed data servers. With HDFS, clients and data servers are paired together, running on the same hardware. Many HPC sites would like to extend their cluster use to support Hadoop MapReduce. With OrangeFS providing distributed storage as part of HPC clusters, they could leverage their existing investment in HPC to run Hadoop MapReduce workloads.

Through testing this configuration, a number of benefits emerged:

  • MapReduce clients accessing a dedicated OrangeFS storage cluster yielded a 25 percent faster combined run time than the traditional approach, where MapReduce clients access data locally for the three operations (teragen, terasort, and teravalidate).
  • OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system. With a general purpose file system, applications can read and write data to OrangeFS while it remains available for Hadoop MapReduce job input, improving run time by eliminating time-consuming HDFS stage-in and stage-out operations.
  • Doubling the number of compute nodes accessing the OrangeFS cluster results in ~300 percent improvement on Terasort job run time.
  • OrangeFS provides good results when clients significantly overcommit storage servers.

About OrangeFS

OrangeFS is a user-friendly, open-source, next-generation parallel file system for compute and storage clusters of the future. OrangeFS increases IO performance by storing a file in objects across multiple servers and accessing these objects in parallel. Offering more feature rich data access and manipulation than HDFS, OrangeFS is an ideal tool for storing, processing and analyzing data with MapReduce. A staff of developers support OrangeFS, improving stability and functionality for the base system and developing new interfaces.

OrangeFS has an object-based infrastructure. Each file and directory consists of two or more objects: one primarily containing file metadata, and the other(s) primarily containing file data. Objects may contain both data and metadata as needed to fulfill their role in the file system. This division and distribution of data to the servers is imperceptible to users, who see a traditional, logical file view. The OrangeFS distributed file structure provides outstanding scalability in performance and capacity.

OrangeFS client interfaces work with a range of operating systems, including Linux, Mac OS X and Windows. Compatible client interfaces include Direct Interface, WebDAV, S3, REST, FUSE, Hadoop and MPI-IO.

OrangeFS with Hadoop MapReduce

Hadoop’s abstract FileSystem class allows MapReduce to leverage file systems other than HDFS, with a configuration file that sets the designated file system. Hadoop MapReduce is written in Java, but OrangeFS’s client libraries are written in C. A Java Native Interface (JNI) shim allows data to be passed between programs, avoiding the overhead of memory copies with Java’s NIO Direct ByteBuffer. The JNI shim allows Java code to execute functions present in the OrangeFS Direct Client Interface. The OrangeFS Direct Client Interface Library is a collection of familiar POSIX-like and system standard input/output (stdio.h) library calls designed for parallel access to OrangeFS. OrangeFS differs from HDFS in that it allows modification of data after the initial write.

The Terasort benchmarks successfully explored potential for replacing HDFS with the prerelease version 2.8.8 of OrangeFS, working with the Hadoop 1.x stable release. The two Hadoop configurations which were evaluated are shown in Figure 1.

File System Test Configuration 

Figure 1 Test Configurations

Test Protocols

Hadoop MapReduce File System Test (Figure 2)

To test the impact of replacing HDFS with OrangeFS, developers performed a full terabyte (1 TB) Terasort benchmark on 8 nodes, each running both MapReduce and the file system shown in the first configuration above. The tests were performed on 8 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. In this test, MapReduce ran locally on the same nodes, first over OrangeFS and then over HDFS, interconnected with 10Gb/s Ethernet. Both file systems used the compute nodes for storage as well.

Hadoop MapReduce Remote Client Test

Using the same benchmarks with typical HPC storage architecture, another test, “OFS Remote” in Figure 2, measured how MapReduce performs when data is stored on dedicated, network-connected storage nodes running OrangeFS. Eight additional nodes were used as MapReduce clients, and eight Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data were used as storage nodes only, shown in the Remote Client Test Configuration in Figure 1.

Results

OrangeFS decreased Terasort run time in the dedicated OrangeFS storage cluster architecture by about 25 percent over the traditional MapReduce architecture, where clients access data from local disks. OrangeFS and HDFS, without replication enabled, performed similarly under identical local (traditional HDFS) configurations (within 0.2 percent); however, OrangeFS adds the advantages of a general purpose, scale-out file system.

Figure 2 Hadoop MapReduce File System Test 

Figure 2 Hadoop MapReduce File System Test

Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers (Figure 3)

A separate test evaluated MapReduce over OrangeFS, overcommitting the storage nodes and evaluating how well this approach scales with more MapReduce clients than storage nodes. The Terasort test was performed with an increasing number of clients utilizing a dedicated OrangeFS cluster composed of 16 Dell PowerEdge R720s with local SSDs for metadata and 12 2-TB drives for data. The Hadoop client nodes had only a single hard disk drive available for intermediate data storage purposes, increasing the time over previous tests where Hadoop clients possessed 12 disks. If the clients used a solid state drive (SSD) for storage and retrieval of intermediate data instead, the slowdown caused by the single disk compared to an array of disks would be alleviated to some extent.

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers 

Figure 3 Hadoop MapReduce over OrangeFS with Overcommitted Storage Servers

Results

In testing 16, 32, and 64 compute nodes, doubling the number of compute nodes caused a ~300 percent improvement on Terasort job run time. OrangeFS provides good results when clients significantly overcommit the storage servers (4 to 1 in these tests). While providing improvements as a good general purpose file system for MapReduce, OrangeFS is also an excellent concurrent working file system to support the storage needs of other applications while simultaneously serving Hadoop MapReduce.

Benefits

  • OrangeFS enables modification of data anywhere in a file, while HDFS requires copying data before modification, except in the case of Append in the Hadoop 2.x release.
  • OrangeFS replaces the HDFS single namenode with multiple OrangeFS metadata/data servers, reducing task time with improved scalability and eliminating this single point of contention.
  • Potentially, intermediate data can also be written to OrangeFS rather than a temporary folder on each Hadoop client disk, optionally retaining it for use in future jobs and further improving performance with OrangeFS serving the data to MapReduce.

Obstacles

  • Unlike HDFS, OrangeFS doesn’t currently support built-in replication. (OrangeFS can be run in High Availability (HA) mode, and plans for the 3.0 release of OrangeFS include integrated replication for both data and metadata.)
  • OrangeFS and Hadoop are separate installations which must be configured to work together. (Plans for the 2.8.8 release of OrangeFS include a more comprehensive documentation set, including instructions for using Hadoop’s MapReduce with the OrangeFS file system.)

Conclusion

The results demonstrated that replacing HDFS with OrangeFS produced better MapReduce performance for workloads with high volumes of intermediate data, i.e., terasort.

Separating MapReduce clients from storage servers can provide stability in the case of client failure, without the overhead of replication, and eases local disk contention during the reduce stage.

Hadoop MapReduce can leverage OrangeFS as its underlying storage system in an HPC environment. A Portable Batch System (PBS) or Sun Grid Engine (SGE) scheduled HPC environment can support on-demand Hadoop MapReduce clusters deployed and configured automatically, using the open source project “myHadoop.” Researchers could customize a version of myHadoop to schedule on-demand MapReduce clusters, with data persisting on OrangeFS, eliminating HDFS’s time consuming data stage-in and stage-out phases. (myHadoop scripts will be available with the next release of OrangeFS, for running jobs in a scheduled environment.)

Future evaluations may test how performance could be improved, since Hadoop Map and Reduce tasks could be patched to support reading and writing intermediate data to OrangeFS, rather than local disk, improving job run time with faster I/O rates.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This