The Move is On to Site-Wide File Systems

By Nicole Hemsoth

September 16, 2013

For the past few decades, the norm among the large government labs, academic research facilities and top commercial sites has been to deploy one large system per site at a time.  However, more recently growing diversity of applications and end user community requirements, combined with non-overlapping budget and expanding technology lifecycles, has been driving a multi-cluster environment approach.  Today it is typical to find two, three or even more, large systems at the same facility.DDN Image 1

While people and organizations are accepting the need for and the benefits of multi-cluster environments, the storage side of the equation has some catching up to do.

10 to 15 years ago and we had simple DAS.  Over the following decade the paradigm changed – the industry moved from simple DAS to a parallel file system, still typically serving just one clustered supercomputer.

After servers, storage is the second highest budget item for HPC sites’ hardware spend. So, if you take the traditional storage approach of one storage system for each cluster in a multi-cluster environment, this is a non-trivial expense.  Not only do you wind up with inefficient utilization as well as slow, complex data sharing, backup and provisioning, but you’re also overbuying performance. And that is the biggest issue – performance is a more direct and measurable cost driver than complexity, inefficiencies and the other factors mentioned above.

So, what’s the answer?  Well, if you examine the more pioneering HPC sites you will see a definite trend towards site-wide file systems.  Even the sites with the most demanding workloads are finding they can meet their diverse application, end user, availability and performance goals more cost effectively with a single site-wide file system that requires them to only buy, grow, network, protect and maintain one central storage repository.

Examples are better than long explanations so let’s look at a site that has three clusters.

DDN Image 2

Assuming a law of averages, it’s expected that the majority of the peak I/O happens at separate times (randomly), since applications are bursting or doing heavy I/O only a fraction of any application runtime.  Considering this fact, as well as other aspects of the HPC workflow, the facility has introduced a number of architectural and workflow inefficiencies into the cluster environment.

 Specifically:

  • The facility has purchased 100GB/s of combined throughput, where the peak requirement of any one cluster is half the total performance sold
  • Performance utilization is low, as the resources are not shared across clusters, and single storage system performance is built for sporadic burst I/O from its dedicated cluster
  • Data sharing across HPC clusters requires data copies and wall-clock wait times as applications move data between islands of storage
  • The care and feeding of three separate storage resources is more complex and expensive than provisioning and maintaining just one

Leading computing organizations in the US such as TACC, NERSC and ORNL are promoting a new site-wide storage architecture strategy that enables cost savings, faster application burst performance, workflow efficiencies and a much simpler approach to deploying HPC resources.

DDN Image 3

 

By deploying a single site-wide file system:

  • The customer saves on total storage purchase by sharing resources – you only build for the performance of your one fastest cluster!
  • The total bandwidth of any one storage system is now the aggregate performance of all of the storage deployed in the site-wide file system. All of the clusters benefit from the storage cluster to potentially realize massive I/O performance gains (e.g. the smaller clusters above now perform I/O at 2x the prior rate, while also reducing storage cost);
  • Applications get instant data access, eliminating needless data copies.
  • Simplicity is the fourth dimension of value that comes from a site wide cluster strategy, but this predominantly applies to power users.  For organizations that add to their computing environment periodically, it’s a massive benefit for them to not have to validate and test new storage architectures while they are shaking out new clusters –  the storage is already online and ubiquitous.

Of course, moving to one site-wide file system means going all-in on one architecture. Organizations undergoing this transition need to take a serious look at the infrastructure before moving forward.  They have to ensure that they are selecting storage and file systems that can handle current and projected capacities and throughputs across their application and user requirements, and do so reliably and cost-effectively.  Open solutions that support multiple file systems so sites can change as requirements change and work with different types of collaboration, tiering and protection options offer the flexibility to avoid lock-in and dead ends.  

The pioneering sites mentioned above, and in many more, have selected DataDirect Networks (DDN) as their storage of choice.  Among the reasons:

  • Wide and Deep Scaling – Customers can scale out to TB/s of performance, or scale deep capacity behind a small number of SFA storage appliances to always build to the precise levels of performance and capacity required while optimizing the cost of configuration at every step.
  • Best-In-Class Performance – DDN supports leadership levels of both throughput and IOPS via its real-time, parallel storage processing architecture.  So, whether you’re running DDN’s EXAScaler or GRIDScaler, or building Lustre or GPFS environments, DDN systems accelerate mixed workloads with a cache centric architecture designed for unpredictable I/O.
  • Quality of Service – DDN systems mask the impact of drive failures from applicationsDr. Boisseau, TACC - quote while also performing very fast drive rebuilds. As parallel file systems stripe data across 1000s of hard drives, DDN technology ensures the best production performance utilization and performance levels to deliver the highest levels of sustained application performance, thereby circumventing Amdahl’s law.
  • DirectMon™ and SFA APIs – One to 100s of file storage appliances can be managed simply from a single pane of glass. DDN built its platform from the ground up to truly scale in clustered storage environments.

The site-wide file system move is on.   For both today’s petascale systems and tomorrow’s exascale machines, site-wide file systems address many of the IO bottleneck and scaling problems of more traditional approaches. DDN, as the storage selected for over 2/3 of the Top100, has the experience and the product portfolio to support site-wide file system projects at any scale.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This