The Move is On to Site-Wide File Systems

By Nicole Hemsoth

September 16, 2013

For the past few decades, the norm among the large government labs, academic research facilities and top commercial sites has been to deploy one large system per site at a time.  However, more recently growing diversity of applications and end user community requirements, combined with non-overlapping budget and expanding technology lifecycles, has been driving a multi-cluster environment approach.  Today it is typical to find two, three or even more, large systems at the same facility.DDN Image 1

While people and organizations are accepting the need for and the benefits of multi-cluster environments, the storage side of the equation has some catching up to do.

10 to 15 years ago and we had simple DAS.  Over the following decade the paradigm changed – the industry moved from simple DAS to a parallel file system, still typically serving just one clustered supercomputer.

After servers, storage is the second highest budget item for HPC sites’ hardware spend. So, if you take the traditional storage approach of one storage system for each cluster in a multi-cluster environment, this is a non-trivial expense.  Not only do you wind up with inefficient utilization as well as slow, complex data sharing, backup and provisioning, but you’re also overbuying performance. And that is the biggest issue – performance is a more direct and measurable cost driver than complexity, inefficiencies and the other factors mentioned above.

So, what’s the answer?  Well, if you examine the more pioneering HPC sites you will see a definite trend towards site-wide file systems.  Even the sites with the most demanding workloads are finding they can meet their diverse application, end user, availability and performance goals more cost effectively with a single site-wide file system that requires them to only buy, grow, network, protect and maintain one central storage repository.

Examples are better than long explanations so let’s look at a site that has three clusters.

DDN Image 2

Assuming a law of averages, it’s expected that the majority of the peak I/O happens at separate times (randomly), since applications are bursting or doing heavy I/O only a fraction of any application runtime.  Considering this fact, as well as other aspects of the HPC workflow, the facility has introduced a number of architectural and workflow inefficiencies into the cluster environment.

 Specifically:

  • The facility has purchased 100GB/s of combined throughput, where the peak requirement of any one cluster is half the total performance sold
  • Performance utilization is low, as the resources are not shared across clusters, and single storage system performance is built for sporadic burst I/O from its dedicated cluster
  • Data sharing across HPC clusters requires data copies and wall-clock wait times as applications move data between islands of storage
  • The care and feeding of three separate storage resources is more complex and expensive than provisioning and maintaining just one

Leading computing organizations in the US such as TACC, NERSC and ORNL are promoting a new site-wide storage architecture strategy that enables cost savings, faster application burst performance, workflow efficiencies and a much simpler approach to deploying HPC resources.

DDN Image 3

 

By deploying a single site-wide file system:

  • The customer saves on total storage purchase by sharing resources – you only build for the performance of your one fastest cluster!
  • The total bandwidth of any one storage system is now the aggregate performance of all of the storage deployed in the site-wide file system. All of the clusters benefit from the storage cluster to potentially realize massive I/O performance gains (e.g. the smaller clusters above now perform I/O at 2x the prior rate, while also reducing storage cost);
  • Applications get instant data access, eliminating needless data copies.
  • Simplicity is the fourth dimension of value that comes from a site wide cluster strategy, but this predominantly applies to power users.  For organizations that add to their computing environment periodically, it’s a massive benefit for them to not have to validate and test new storage architectures while they are shaking out new clusters –  the storage is already online and ubiquitous.

Of course, moving to one site-wide file system means going all-in on one architecture. Organizations undergoing this transition need to take a serious look at the infrastructure before moving forward.  They have to ensure that they are selecting storage and file systems that can handle current and projected capacities and throughputs across their application and user requirements, and do so reliably and cost-effectively.  Open solutions that support multiple file systems so sites can change as requirements change and work with different types of collaboration, tiering and protection options offer the flexibility to avoid lock-in and dead ends.  

The pioneering sites mentioned above, and in many more, have selected DataDirect Networks (DDN) as their storage of choice.  Among the reasons:

  • Wide and Deep Scaling – Customers can scale out to TB/s of performance, or scale deep capacity behind a small number of SFA storage appliances to always build to the precise levels of performance and capacity required while optimizing the cost of configuration at every step.
  • Best-In-Class Performance – DDN supports leadership levels of both throughput and IOPS via its real-time, parallel storage processing architecture.  So, whether you’re running DDN’s EXAScaler or GRIDScaler, or building Lustre or GPFS environments, DDN systems accelerate mixed workloads with a cache centric architecture designed for unpredictable I/O.
  • Quality of Service – DDN systems mask the impact of drive failures from applicationsDr. Boisseau, TACC - quote while also performing very fast drive rebuilds. As parallel file systems stripe data across 1000s of hard drives, DDN technology ensures the best production performance utilization and performance levels to deliver the highest levels of sustained application performance, thereby circumventing Amdahl’s law.
  • DirectMon™ and SFA APIs – One to 100s of file storage appliances can be managed simply from a single pane of glass. DDN built its platform from the ground up to truly scale in clustered storage environments.

The site-wide file system move is on.   For both today’s petascale systems and tomorrow’s exascale machines, site-wide file systems address many of the IO bottleneck and scaling problems of more traditional approaches. DDN, as the storage selected for over 2/3 of the Top100, has the experience and the product portfolio to support site-wide file system projects at any scale.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This