Phi and Kepler Run Monte Carlo Race

By Nicole Hemsoth

September 18, 2013

There have been a number of efforts lately to help delineate the differences between performance, portability and functionality on GPUs over the new Xeon Phi coprocessors, with some organizations benchmarking according to industry-specific algorithms.

This week we spoke with Jörg Lotze, CTO and cofounder of financial services-driven software firm, Xcelerit, about benchmarking accelerators, coprocessors, and multicore architectures with specific emphasis on how GPUs stack up against Intel Xeon Phi coprocessors. Lotze discussed the challenges and opportunities of each in the context of real-world Monte Carlo examples.

Jörg Lotze: I come from a research background in telecommunications engineering before we started Xcelerit. It sounds like a completely different field, but we were facing similar problems to what we’re seeing now in finance. It’s all about making fast real-time processing in various different bits of hardware. During that kind of research, we played around with the IBM Cell processor, with GPUs, with even embedded processors of all sorts, in order to make fast software radio implementations in that context and that’s where all this experience came from. That’s also how the idea for this company and this tool came about.

All these techniques and things learned there, we quickly realized that they can be applied in an industrial context in a completely different field. And that’s what we are focusing on now. We are providing software for finance that allows quantitative analysts to implement their algorithms and focus on their algorithms and we take care to automatically get the benefit of all this high-performance hardware without the users having to worry about all these low-level implementation details, so in a sense it makes it possible for quants to write fast software, which is easy to maintain, and benefit from these really interesting new hardwares.

HPCwire: So we’re going to get to your findings about the comparisons in a minute, but first it’s important to note that you tested this across a couple of different types algorithms. Will you set us up on why this is important for this benchmark?

Lotze: Yes, so for any benchmark, it’s always important to see it in context, you can’t just answer the question of which one is better generically. Here because our clients are in finance mostly, we looked at two algorithms, which are often occurring in the financial world and and we picked two, which have different characteristics.

he first one is an embarrassingly parallel Monte Carlo for pricing swaption portfolio. Embarrassingly parallel in a sense all the Monte Carlo parts are completely parallel, there literally are no sequential bits.

The second is for processing American options using a Monte Carlo technique as well, but here those paths are not independent. Each time step needs some regression computed over the whole path in order to go back to the previous one. We don’t have independent paths here and we have an iterative component, which is not good for parallelism in general, so it’s really a different characteristic. That’s why we picked those two different applications.

HPCwire: These are representative algorithms across all of financial services, right?

Lotze: Yes, in finance pricing, Monte Carlo is the dominant American technique, and American-style options are around a lot, and the other one as well, so it represents a large set of common pricing methods.

HPCwire: It’s a very real world context here. To get to the hardware side of this, you ran your tests using Xeon Phi, NVIDIA’s Tesla K20-X, and “Sandy Bridge” for a point of comparison – can you set us up on the hardware side now?

Lotze: We’ve been using the brand-new Xeon Phi as an accelerator processor, an accelerator processor that just came out this year and it’s basically massively parallel – it has 60 cores, 4x hyper-threaded, so you end up having 240 hardware threads that you can exploit. And it’s a wide vector unit, so it’s for highly parallel number-crunching. The same can be said for the Tesla GPU, but this has been around for longer. Lots and lots of parallel units that should be kept busy for highly-parallel processing. It’s also a coprocessor. And of course, for comparison, we looked at a standard CPU which you can find in practically all servers, which is the Xeon “Sandy Bridge” generation – they are also multicore and they are very powerful – so it always makes sense to look at all three of those in relation and not just the Phi and the Tesla.

When you see those platforms, everybody just thinks about teraflops and how fast these are for compute capacity, but what’s equally important is how fast can it access its memory and how much time is spent getting the data into that memory. It’s always good to find the right balance between computing and memory, so if an application becomes compute bound, then yes you are going to get close to these teraflops that you see here. But that usually means for one memory access into a lot of instructions to make that work. So it’s always a balance between memory and computing instructions, and as soon as caching comes into play – which obviously is in place in all these platforms – this becomes a little bit unpredictable. So you never know if an application is really compute- or memory-bound before you put it to the test.

HPCwire: So what did you find in the context of these applications and the hardware-configuration that you set up?

Lotze: The first, the Monte Carlo, is also very compute-heavy and uses relatively little memory, so this is strongly compute-bound of all the platforms, which is ideal for the parallel processors like the Phi and the GPU. It can be seen here clearly. We got speedups of the Kepler GPU compared to sequential of 96x, and the Phi of like 45x, the parallel “Sandy Bridge” also got faster, nearly 20X faster.

You can clearly see that it’s case-variable for highly-parallel architectures.

HPCwire: In your conclusion section, you make a really good point, which I’ll read verbatim:

We’ve seen that there is one processor that needs to be added to the picture — the commodity multi-core CPU. This is already a part of many server configurations, and for some applications, e.g., Monte-Carlo pricing of American options, it can give better or comparable performance than an accelerator processor when optimized correctly. Between NVIDIA’s Kepler GPUs and Xeon Phi, the GPU wins for both of our test applications.

Lotze: Lots of people just think about those accelerative processors on their own, but they should always consider the parallel CPU as well. So here we have a 16-core “Sandy Bridge” system, and if it’s heavily optimized, it’s only about 2-and-a half-times slower than the Xeon Phi, and about 5X slower than the Tesla GPU. So all those massive speedups that I’ve just said is compared to sequential, but the parallel highly optimized “Sandy Bridge” can also get pretty fast. Now for this application, the first one, which is embarrassingly parallel, still there’s a huge benefit from using GPUs or the Xeon Phi for this. The main point for our conclusion is that the American Monte Carlo, which has an iterative step in it, so it’s not fully parallel, actually the “Sandy” Bridge is the fastest, or rather it’s about the same speed as the GPU. I think that’s kind of an interesting finding here, which tells you that you should consider all the platforms when you are comparing a specific algorithm.

HPCwire: You mentioned there were a lot of parallels between what you are doing here and telecommunications. Do you think that this same set of findings is going to be true for some other key markets in a very similar way and if so what are those? Where is this most relevant outside of financial services?

Lotze: I think it’s generally relevant. You shouldn’t just compare the GPU and the Phi, you should also put “Sandy Bridge” in the picture – that’s for sure. The other thing is it’s hard to tell in advance which one is going to be the best before you actually do testing because all these theoretical teraflops and memory bandwidth, doesn’t mean much for real applications. In general, I can see this working for oil and gas, biochemistry, and all these fields where high-performance computing is in use.

HPCwire: What are financial services firms actually doing? Would you say a lot of the work you are doing involves pretty vanilla configurations, lots of servers, not a lot of acceleration? How frequent is it that you find ultra-high performance accelerated systems in some of these firms?

Lotze: They are all looking a lot for high-performance systems, especially with the regulators coming in after the financial crisis. There has been a lot of added complexity to their risk computations for example, so now they need to do a lot more risk scenarios and have to compute new measures, and that’s across the whole portfolio of instruments that a bank has. You are talking about huge amount of data that needs to be priced for thousands of scenarios different contexts, and that’s usually in the Monte Carlo setup. You are looking at grids of hundreds of machines, running at 6-7 hours overnight and barely getting the work done, so this clearly a high-performance computing setup. I think what’s different with finance is that this is relatively new to them compared to oil and gas and physics. So they are just learning and there is not that crazy hardware expertise in all those different platforms and this is actually why we are there.

HPCwire: So you are saying that GPUs and coprocessors are still an experimental phase at a lot of financial services firms?

Lotze: No, I don’t say that – it’s become mainstream. A lot of banks have actually gone public, for example GP Morgan, about using large amounts of GPUs in their day-to-day real production process.  It’s not an experimental thing anymore – it’s really gone mainstream there.

HPCwire: One last question for you. Do you see this trend that you have in your benchmarks with GPUs being the real winner changing as the technology develops? On the processor front, there are some interesting things around the corner.

Lotze: These are just two specific applications. I’m sure there will be others where this picture changes and is different. It’s really just two points in the whole big space of applications. So this is not a general answer, and I think the Phi will be better for other applications. Also, the Phi only came out this year, and Tesla GPUs have been around since 2007, so the picture might change a little bit. So I don’t think there is a general answer. All these platforms are good for something and you just have to find out what is best for yours. What also needs to be considered is there’s a lot of optimizations that went into this. There’s a week’s worth of work to tune it like this to get these numbers, while most users in a real-world context, they don’t have the time to do this.

HPCwire: Let’s talk very briefly about the optimization comparison between optimizing for GPU and for Xeon Phi, which supposedly is easier to get up and running, but the optimization is still pretty lengthy. Is that your experience also?

Lotze: Yes, in general, yes.  But on both platforms, even on the GPU, it’s relatively quick to just have something running, but to get it fast on all these, and that includes the “Sandy Bridge” if you want to optimize it, it’s not easy to actually get the most out of the hardware. Those optimizations really take a good bit of expertise, and that’s also what our software development kit is trying to do so it automates those optimizations for users so they don’t need to worry about it. They can get one source code portably running on all these platforms, so they can see which one works best without hand-tuning everything. What also needs to be said is that all those optimizations make the code very specific to a specific hardware so the portability goes completely out the window, and that’s typically in a real-world context something that especially banks don’t want and I’m sure that in other fields it’s the same. Portability is quite important to them, so I doubt they will go down to that level of optimization that we see here.

HPCwire: This has been fascinating. Thank you for putting in the effort to compare both of these in the context of real-world applications.

Lotze: Thank you.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This