Phi and Kepler Run Monte Carlo Race

By Nicole Hemsoth

September 18, 2013

There have been a number of efforts lately to help delineate the differences between performance, portability and functionality on GPUs over the new Xeon Phi coprocessors, with some organizations benchmarking according to industry-specific algorithms.

This week we spoke with Jörg Lotze, CTO and cofounder of financial services-driven software firm, Xcelerit, about benchmarking accelerators, coprocessors, and multicore architectures with specific emphasis on how GPUs stack up against Intel Xeon Phi coprocessors. Lotze discussed the challenges and opportunities of each in the context of real-world Monte Carlo examples.

Jörg Lotze: I come from a research background in telecommunications engineering before we started Xcelerit. It sounds like a completely different field, but we were facing similar problems to what we’re seeing now in finance. It’s all about making fast real-time processing in various different bits of hardware. During that kind of research, we played around with the IBM Cell processor, with GPUs, with even embedded processors of all sorts, in order to make fast software radio implementations in that context and that’s where all this experience came from. That’s also how the idea for this company and this tool came about.

All these techniques and things learned there, we quickly realized that they can be applied in an industrial context in a completely different field. And that’s what we are focusing on now. We are providing software for finance that allows quantitative analysts to implement their algorithms and focus on their algorithms and we take care to automatically get the benefit of all this high-performance hardware without the users having to worry about all these low-level implementation details, so in a sense it makes it possible for quants to write fast software, which is easy to maintain, and benefit from these really interesting new hardwares.

HPCwire: So we’re going to get to your findings about the comparisons in a minute, but first it’s important to note that you tested this across a couple of different types algorithms. Will you set us up on why this is important for this benchmark?

Lotze: Yes, so for any benchmark, it’s always important to see it in context, you can’t just answer the question of which one is better generically. Here because our clients are in finance mostly, we looked at two algorithms, which are often occurring in the financial world and and we picked two, which have different characteristics.

he first one is an embarrassingly parallel Monte Carlo for pricing swaption portfolio. Embarrassingly parallel in a sense all the Monte Carlo parts are completely parallel, there literally are no sequential bits.

The second is for processing American options using a Monte Carlo technique as well, but here those paths are not independent. Each time step needs some regression computed over the whole path in order to go back to the previous one. We don’t have independent paths here and we have an iterative component, which is not good for parallelism in general, so it’s really a different characteristic. That’s why we picked those two different applications.

HPCwire: These are representative algorithms across all of financial services, right?

Lotze: Yes, in finance pricing, Monte Carlo is the dominant American technique, and American-style options are around a lot, and the other one as well, so it represents a large set of common pricing methods.

HPCwire: It’s a very real world context here. To get to the hardware side of this, you ran your tests using Xeon Phi, NVIDIA’s Tesla K20-X, and “Sandy Bridge” for a point of comparison – can you set us up on the hardware side now?

Lotze: We’ve been using the brand-new Xeon Phi as an accelerator processor, an accelerator processor that just came out this year and it’s basically massively parallel – it has 60 cores, 4x hyper-threaded, so you end up having 240 hardware threads that you can exploit. And it’s a wide vector unit, so it’s for highly parallel number-crunching. The same can be said for the Tesla GPU, but this has been around for longer. Lots and lots of parallel units that should be kept busy for highly-parallel processing. It’s also a coprocessor. And of course, for comparison, we looked at a standard CPU which you can find in practically all servers, which is the Xeon “Sandy Bridge” generation – they are also multicore and they are very powerful – so it always makes sense to look at all three of those in relation and not just the Phi and the Tesla.

When you see those platforms, everybody just thinks about teraflops and how fast these are for compute capacity, but what’s equally important is how fast can it access its memory and how much time is spent getting the data into that memory. It’s always good to find the right balance between computing and memory, so if an application becomes compute bound, then yes you are going to get close to these teraflops that you see here. But that usually means for one memory access into a lot of instructions to make that work. So it’s always a balance between memory and computing instructions, and as soon as caching comes into play – which obviously is in place in all these platforms – this becomes a little bit unpredictable. So you never know if an application is really compute- or memory-bound before you put it to the test.

HPCwire: So what did you find in the context of these applications and the hardware-configuration that you set up?

Lotze: The first, the Monte Carlo, is also very compute-heavy and uses relatively little memory, so this is strongly compute-bound of all the platforms, which is ideal for the parallel processors like the Phi and the GPU. It can be seen here clearly. We got speedups of the Kepler GPU compared to sequential of 96x, and the Phi of like 45x, the parallel “Sandy Bridge” also got faster, nearly 20X faster.

You can clearly see that it’s case-variable for highly-parallel architectures.

HPCwire: In your conclusion section, you make a really good point, which I’ll read verbatim:

We’ve seen that there is one processor that needs to be added to the picture — the commodity multi-core CPU. This is already a part of many server configurations, and for some applications, e.g., Monte-Carlo pricing of American options, it can give better or comparable performance than an accelerator processor when optimized correctly. Between NVIDIA’s Kepler GPUs and Xeon Phi, the GPU wins for both of our test applications.

Lotze: Lots of people just think about those accelerative processors on their own, but they should always consider the parallel CPU as well. So here we have a 16-core “Sandy Bridge” system, and if it’s heavily optimized, it’s only about 2-and-a half-times slower than the Xeon Phi, and about 5X slower than the Tesla GPU. So all those massive speedups that I’ve just said is compared to sequential, but the parallel highly optimized “Sandy Bridge” can also get pretty fast. Now for this application, the first one, which is embarrassingly parallel, still there’s a huge benefit from using GPUs or the Xeon Phi for this. The main point for our conclusion is that the American Monte Carlo, which has an iterative step in it, so it’s not fully parallel, actually the “Sandy” Bridge is the fastest, or rather it’s about the same speed as the GPU. I think that’s kind of an interesting finding here, which tells you that you should consider all the platforms when you are comparing a specific algorithm.

HPCwire: You mentioned there were a lot of parallels between what you are doing here and telecommunications. Do you think that this same set of findings is going to be true for some other key markets in a very similar way and if so what are those? Where is this most relevant outside of financial services?

Lotze: I think it’s generally relevant. You shouldn’t just compare the GPU and the Phi, you should also put “Sandy Bridge” in the picture – that’s for sure. The other thing is it’s hard to tell in advance which one is going to be the best before you actually do testing because all these theoretical teraflops and memory bandwidth, doesn’t mean much for real applications. In general, I can see this working for oil and gas, biochemistry, and all these fields where high-performance computing is in use.

HPCwire: What are financial services firms actually doing? Would you say a lot of the work you are doing involves pretty vanilla configurations, lots of servers, not a lot of acceleration? How frequent is it that you find ultra-high performance accelerated systems in some of these firms?

Lotze: They are all looking a lot for high-performance systems, especially with the regulators coming in after the financial crisis. There has been a lot of added complexity to their risk computations for example, so now they need to do a lot more risk scenarios and have to compute new measures, and that’s across the whole portfolio of instruments that a bank has. You are talking about huge amount of data that needs to be priced for thousands of scenarios different contexts, and that’s usually in the Monte Carlo setup. You are looking at grids of hundreds of machines, running at 6-7 hours overnight and barely getting the work done, so this clearly a high-performance computing setup. I think what’s different with finance is that this is relatively new to them compared to oil and gas and physics. So they are just learning and there is not that crazy hardware expertise in all those different platforms and this is actually why we are there.

HPCwire: So you are saying that GPUs and coprocessors are still an experimental phase at a lot of financial services firms?

Lotze: No, I don’t say that – it’s become mainstream. A lot of banks have actually gone public, for example GP Morgan, about using large amounts of GPUs in their day-to-day real production process.  It’s not an experimental thing anymore – it’s really gone mainstream there.

HPCwire: One last question for you. Do you see this trend that you have in your benchmarks with GPUs being the real winner changing as the technology develops? On the processor front, there are some interesting things around the corner.

Lotze: These are just two specific applications. I’m sure there will be others where this picture changes and is different. It’s really just two points in the whole big space of applications. So this is not a general answer, and I think the Phi will be better for other applications. Also, the Phi only came out this year, and Tesla GPUs have been around since 2007, so the picture might change a little bit. So I don’t think there is a general answer. All these platforms are good for something and you just have to find out what is best for yours. What also needs to be considered is there’s a lot of optimizations that went into this. There’s a week’s worth of work to tune it like this to get these numbers, while most users in a real-world context, they don’t have the time to do this.

HPCwire: Let’s talk very briefly about the optimization comparison between optimizing for GPU and for Xeon Phi, which supposedly is easier to get up and running, but the optimization is still pretty lengthy. Is that your experience also?

Lotze: Yes, in general, yes.  But on both platforms, even on the GPU, it’s relatively quick to just have something running, but to get it fast on all these, and that includes the “Sandy Bridge” if you want to optimize it, it’s not easy to actually get the most out of the hardware. Those optimizations really take a good bit of expertise, and that’s also what our software development kit is trying to do so it automates those optimizations for users so they don’t need to worry about it. They can get one source code portably running on all these platforms, so they can see which one works best without hand-tuning everything. What also needs to be said is that all those optimizations make the code very specific to a specific hardware so the portability goes completely out the window, and that’s typically in a real-world context something that especially banks don’t want and I’m sure that in other fields it’s the same. Portability is quite important to them, so I doubt they will go down to that level of optimization that we see here.

HPCwire: This has been fascinating. Thank you for putting in the effort to compare both of these in the context of real-world applications.

Lotze: Thank you.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This