Phi and Kepler Run Monte Carlo Race

By Nicole Hemsoth

September 18, 2013

There have been a number of efforts lately to help delineate the differences between performance, portability and functionality on GPUs over the new Xeon Phi coprocessors, with some organizations benchmarking according to industry-specific algorithms.

This week we spoke with Jörg Lotze, CTO and cofounder of financial services-driven software firm, Xcelerit, about benchmarking accelerators, coprocessors, and multicore architectures with specific emphasis on how GPUs stack up against Intel Xeon Phi coprocessors. Lotze discussed the challenges and opportunities of each in the context of real-world Monte Carlo examples.

Jörg Lotze: I come from a research background in telecommunications engineering before we started Xcelerit. It sounds like a completely different field, but we were facing similar problems to what we’re seeing now in finance. It’s all about making fast real-time processing in various different bits of hardware. During that kind of research, we played around with the IBM Cell processor, with GPUs, with even embedded processors of all sorts, in order to make fast software radio implementations in that context and that’s where all this experience came from. That’s also how the idea for this company and this tool came about.

All these techniques and things learned there, we quickly realized that they can be applied in an industrial context in a completely different field. And that’s what we are focusing on now. We are providing software for finance that allows quantitative analysts to implement their algorithms and focus on their algorithms and we take care to automatically get the benefit of all this high-performance hardware without the users having to worry about all these low-level implementation details, so in a sense it makes it possible for quants to write fast software, which is easy to maintain, and benefit from these really interesting new hardwares.

HPCwire: So we’re going to get to your findings about the comparisons in a minute, but first it’s important to note that you tested this across a couple of different types algorithms. Will you set us up on why this is important for this benchmark?

Lotze: Yes, so for any benchmark, it’s always important to see it in context, you can’t just answer the question of which one is better generically. Here because our clients are in finance mostly, we looked at two algorithms, which are often occurring in the financial world and and we picked two, which have different characteristics.

he first one is an embarrassingly parallel Monte Carlo for pricing swaption portfolio. Embarrassingly parallel in a sense all the Monte Carlo parts are completely parallel, there literally are no sequential bits.

The second is for processing American options using a Monte Carlo technique as well, but here those paths are not independent. Each time step needs some regression computed over the whole path in order to go back to the previous one. We don’t have independent paths here and we have an iterative component, which is not good for parallelism in general, so it’s really a different characteristic. That’s why we picked those two different applications.

HPCwire: These are representative algorithms across all of financial services, right?

Lotze: Yes, in finance pricing, Monte Carlo is the dominant American technique, and American-style options are around a lot, and the other one as well, so it represents a large set of common pricing methods.

HPCwire: It’s a very real world context here. To get to the hardware side of this, you ran your tests using Xeon Phi, NVIDIA’s Tesla K20-X, and “Sandy Bridge” for a point of comparison – can you set us up on the hardware side now?

Lotze: We’ve been using the brand-new Xeon Phi as an accelerator processor, an accelerator processor that just came out this year and it’s basically massively parallel – it has 60 cores, 4x hyper-threaded, so you end up having 240 hardware threads that you can exploit. And it’s a wide vector unit, so it’s for highly parallel number-crunching. The same can be said for the Tesla GPU, but this has been around for longer. Lots and lots of parallel units that should be kept busy for highly-parallel processing. It’s also a coprocessor. And of course, for comparison, we looked at a standard CPU which you can find in practically all servers, which is the Xeon “Sandy Bridge” generation – they are also multicore and they are very powerful – so it always makes sense to look at all three of those in relation and not just the Phi and the Tesla.

When you see those platforms, everybody just thinks about teraflops and how fast these are for compute capacity, but what’s equally important is how fast can it access its memory and how much time is spent getting the data into that memory. It’s always good to find the right balance between computing and memory, so if an application becomes compute bound, then yes you are going to get close to these teraflops that you see here. But that usually means for one memory access into a lot of instructions to make that work. So it’s always a balance between memory and computing instructions, and as soon as caching comes into play – which obviously is in place in all these platforms – this becomes a little bit unpredictable. So you never know if an application is really compute- or memory-bound before you put it to the test.

HPCwire: So what did you find in the context of these applications and the hardware-configuration that you set up?

Lotze: The first, the Monte Carlo, is also very compute-heavy and uses relatively little memory, so this is strongly compute-bound of all the platforms, which is ideal for the parallel processors like the Phi and the GPU. It can be seen here clearly. We got speedups of the Kepler GPU compared to sequential of 96x, and the Phi of like 45x, the parallel “Sandy Bridge” also got faster, nearly 20X faster.

You can clearly see that it’s case-variable for highly-parallel architectures.

HPCwire: In your conclusion section, you make a really good point, which I’ll read verbatim:

We’ve seen that there is one processor that needs to be added to the picture — the commodity multi-core CPU. This is already a part of many server configurations, and for some applications, e.g., Monte-Carlo pricing of American options, it can give better or comparable performance than an accelerator processor when optimized correctly. Between NVIDIA’s Kepler GPUs and Xeon Phi, the GPU wins for both of our test applications.

Lotze: Lots of people just think about those accelerative processors on their own, but they should always consider the parallel CPU as well. So here we have a 16-core “Sandy Bridge” system, and if it’s heavily optimized, it’s only about 2-and-a half-times slower than the Xeon Phi, and about 5X slower than the Tesla GPU. So all those massive speedups that I’ve just said is compared to sequential, but the parallel highly optimized “Sandy Bridge” can also get pretty fast. Now for this application, the first one, which is embarrassingly parallel, still there’s a huge benefit from using GPUs or the Xeon Phi for this. The main point for our conclusion is that the American Monte Carlo, which has an iterative step in it, so it’s not fully parallel, actually the “Sandy” Bridge is the fastest, or rather it’s about the same speed as the GPU. I think that’s kind of an interesting finding here, which tells you that you should consider all the platforms when you are comparing a specific algorithm.

HPCwire: You mentioned there were a lot of parallels between what you are doing here and telecommunications. Do you think that this same set of findings is going to be true for some other key markets in a very similar way and if so what are those? Where is this most relevant outside of financial services?

Lotze: I think it’s generally relevant. You shouldn’t just compare the GPU and the Phi, you should also put “Sandy Bridge” in the picture – that’s for sure. The other thing is it’s hard to tell in advance which one is going to be the best before you actually do testing because all these theoretical teraflops and memory bandwidth, doesn’t mean much for real applications. In general, I can see this working for oil and gas, biochemistry, and all these fields where high-performance computing is in use.

HPCwire: What are financial services firms actually doing? Would you say a lot of the work you are doing involves pretty vanilla configurations, lots of servers, not a lot of acceleration? How frequent is it that you find ultra-high performance accelerated systems in some of these firms?

Lotze: They are all looking a lot for high-performance systems, especially with the regulators coming in after the financial crisis. There has been a lot of added complexity to their risk computations for example, so now they need to do a lot more risk scenarios and have to compute new measures, and that’s across the whole portfolio of instruments that a bank has. You are talking about huge amount of data that needs to be priced for thousands of scenarios different contexts, and that’s usually in the Monte Carlo setup. You are looking at grids of hundreds of machines, running at 6-7 hours overnight and barely getting the work done, so this clearly a high-performance computing setup. I think what’s different with finance is that this is relatively new to them compared to oil and gas and physics. So they are just learning and there is not that crazy hardware expertise in all those different platforms and this is actually why we are there.

HPCwire: So you are saying that GPUs and coprocessors are still an experimental phase at a lot of financial services firms?

Lotze: No, I don’t say that – it’s become mainstream. A lot of banks have actually gone public, for example GP Morgan, about using large amounts of GPUs in their day-to-day real production process.  It’s not an experimental thing anymore – it’s really gone mainstream there.

HPCwire: One last question for you. Do you see this trend that you have in your benchmarks with GPUs being the real winner changing as the technology develops? On the processor front, there are some interesting things around the corner.

Lotze: These are just two specific applications. I’m sure there will be others where this picture changes and is different. It’s really just two points in the whole big space of applications. So this is not a general answer, and I think the Phi will be better for other applications. Also, the Phi only came out this year, and Tesla GPUs have been around since 2007, so the picture might change a little bit. So I don’t think there is a general answer. All these platforms are good for something and you just have to find out what is best for yours. What also needs to be considered is there’s a lot of optimizations that went into this. There’s a week’s worth of work to tune it like this to get these numbers, while most users in a real-world context, they don’t have the time to do this.

HPCwire: Let’s talk very briefly about the optimization comparison between optimizing for GPU and for Xeon Phi, which supposedly is easier to get up and running, but the optimization is still pretty lengthy. Is that your experience also?

Lotze: Yes, in general, yes.  But on both platforms, even on the GPU, it’s relatively quick to just have something running, but to get it fast on all these, and that includes the “Sandy Bridge” if you want to optimize it, it’s not easy to actually get the most out of the hardware. Those optimizations really take a good bit of expertise, and that’s also what our software development kit is trying to do so it automates those optimizations for users so they don’t need to worry about it. They can get one source code portably running on all these platforms, so they can see which one works best without hand-tuning everything. What also needs to be said is that all those optimizations make the code very specific to a specific hardware so the portability goes completely out the window, and that’s typically in a real-world context something that especially banks don’t want and I’m sure that in other fields it’s the same. Portability is quite important to them, so I doubt they will go down to that level of optimization that we see here.

HPCwire: This has been fascinating. Thank you for putting in the effort to compare both of these in the context of real-world applications.

Lotze: Thank you.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This