Rising to the STEM Challenge

By Tiffany Trader

September 19, 2013

Around the world, community, industry and academic leaders bemoan the “skills gap,” the divide between the profile of those seeking employment and the actual requirements of the marketplace. A number of studies have reported that during the next decade, there will be millions of available jobs in so-called STEM fields (science, technology, engineering and mathematics) and not enough qualified candidates to fill those positions.

The National Academy of Sciences, National Academy of Engineering, and the Institute of Medicine describe STEM as “high-quality, knowledge-intensive jobs…that lead to discovery and new technology,” benefiting the US economy and standard of living. The US may be short by as many as three million of these highly-skilled workers by 2018, putting national competitiveness at risk.

The National Math + Science Initiative refers to this shortage as a STEM crisis, which they say creates a chilling effect in research and the economy.

Some data points:

  • The demand for STEM skills has risen dramatically. STEM-based jobs grew at over three times the pace of non-STEM jobs between 2000 and 2010 and are expected to grow almost twice as fast by 2018.
  • As of February 2012, more than half of the 30 fastest growing occupations require training over and above a high-school diploma. But American students aren’t keeping pace with their foreign counterparts. American universities only award about a third of the bachelor’s degrees in science and engineering as Asian universities.
  • 25 years ago, the US led the world in high school and college graduation rates. Today, the US has dropped to 20th and 16th, respectively. The decline in education relative to other countries has a troubling effect on R&D. By 2009, for the first time, over half of US patents were awarded to non-US companies.

President Obama’s administration maintains that STEM education is vital to keeping the nation competitive. The President has supported efforts to train young people for technologically-driven careers, but government funding is struggling and many states are facing budget cuts. As a result, there is a greater emphasis on collaborative endeavors, public-private partnerships where vendors share some of the cost and then benefit from the research through technology-transfer programs.

The business sector has also aligned with communities and schools to encourage interest in science-based careers. Intel and Lockheed Martin, for example, have helped inspire young talent by sponsoring tournaments, science fairs and other innovation challenges. The Intel Foundation hosts some of the world’s largest pre-college science fair competitions and also runs the Educators Academy, an online community for K-12 educators. Lockheed Martin is also doing its part to advance STEM education, by sponsoring outreach activities for students from elementary school through college.

The Gender Factor

The gender disparity in the science and math-driven disciplines continues, but hidden in this problem is a source of immense potential. While women make up 51 percent of the overall workforce, they comprise only 26 percent of STEM workers. Solving for this disparity would go a long way to minimizing the skills gap, and helping the United States meet its projected skilled employment needs.

The computer science field highlights the slow pace of change. While the past decades’ attention to female equality has paid off as higher participation in most STEM fields, the number of women in the computational sciences has actually fallen. Recent Census Bureau findings show the number of female computer workers, employed in such roles as developers, programmers, and security analysts, has been on a 20-plus-year decline. In 1990, a full third of computer workers were women, but now that number has dropped to 27 percent.

An article at the Alantic about the “Brogrammer Effect” delves further into the data, noting the women in computer science are more likely to be Web developers (40 percent) than software developers (22 percent). The author makes the connection that less women are entering the field because they’re not pursuing computer science degrees: women’s participation in computer science education peaked in the 1980s. So why the lack of interest?

There are certainly cultural implications. Where male nerdism is accepted, embraced even, geeky women don’t have quite the same cachet. And while it’s easy to think of geek-chic role models like Steve Jobs or Mark Zuckerberg, their female equivalents don’t spring as readily to mind.

According to a recent US Census survey, computer workers make up about a half of STEM employment, and STEM pays well. Students who pursue a degree in a field pertaining to computers, mathematics, statistics or engineering are the most likely to secure full-time, year-round employment and the least likely to be unemployed. Earnings paralleled employment rates, with engineering majors averaging earnings of $92,000 per year and those coming from arts and humanities fields making about $55,000 annually.

Even the social studies, the arts and humanities, which tend to be more female-dominated, are becoming more technology-driven and are tapping the benefits of computer science. New research fields are springing up with names like “petascale humanities.” In fact, a new acronym has arisen that reflects the importance of the arts in the national curricula and the new economy. Proponents of “STEAM” (the “A” is for Arts) point out that creativity is an essential component of innovation.

Women continue to earn less than their male counterparts across every field of degree. Still women in high-tech jobs earn about 25 percent more than those in non-science fields. Advocates should not be afraid to play the money card, observes the executive director of the nonprofit group Science Club for Girls, Connie Chow, in this New York Times piece on the dearth of women scientists. That earning-potential can have a strong motivating effect, especially for students in low-income communities.

Preparation and Inspiration

Community and education leaders maintain that increasing student engagement in STEM subjects and addressing the shortage of qualified STEM teachers are necessary to ensure the future success of the US. For all students, and for women and minorities especially, early exposure to STEM subjects is critically important, as is being surrounded by a community of STEM professionals.

Central to this strategy is recruiting qualified teachers and giving them the means to develop into effective instructors. Studies confirm the common sense idea that there is a strong link between teacher performance and student success. The President’s Council of Advisors on Science and Technology (PCAST) estimates that the US will need more than 100,000 STEM teachers over the next decade.

The authors of the report advise: “To meet our needs for a STEM-capable citizenry, a STEM-proficient workforce, and future STEM experts, the nation must focus on two complementary goals: We must prepare all students, including girls and minorities who are underrepresented in these fields, to be proficient in STEM subjects. And we must inspire all students to learn STEM and, in the process, motivate many of them to pursue STEM careers.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This