Rising to the STEM Challenge

By Tiffany Trader

September 19, 2013

Around the world, community, industry and academic leaders bemoan the “skills gap,” the divide between the profile of those seeking employment and the actual requirements of the marketplace. A number of studies have reported that during the next decade, there will be millions of available jobs in so-called STEM fields (science, technology, engineering and mathematics) and not enough qualified candidates to fill those positions.

The National Academy of Sciences, National Academy of Engineering, and the Institute of Medicine describe STEM as “high-quality, knowledge-intensive jobs…that lead to discovery and new technology,” benefiting the US economy and standard of living. The US may be short by as many as three million of these highly-skilled workers by 2018, putting national competitiveness at risk.

The National Math + Science Initiative refers to this shortage as a STEM crisis, which they say creates a chilling effect in research and the economy.

Some data points:

  • The demand for STEM skills has risen dramatically. STEM-based jobs grew at over three times the pace of non-STEM jobs between 2000 and 2010 and are expected to grow almost twice as fast by 2018.
  • As of February 2012, more than half of the 30 fastest growing occupations require training over and above a high-school diploma. But American students aren’t keeping pace with their foreign counterparts. American universities only award about a third of the bachelor’s degrees in science and engineering as Asian universities.
  • 25 years ago, the US led the world in high school and college graduation rates. Today, the US has dropped to 20th and 16th, respectively. The decline in education relative to other countries has a troubling effect on R&D. By 2009, for the first time, over half of US patents were awarded to non-US companies.

President Obama’s administration maintains that STEM education is vital to keeping the nation competitive. The President has supported efforts to train young people for technologically-driven careers, but government funding is struggling and many states are facing budget cuts. As a result, there is a greater emphasis on collaborative endeavors, public-private partnerships where vendors share some of the cost and then benefit from the research through technology-transfer programs.

The business sector has also aligned with communities and schools to encourage interest in science-based careers. Intel and Lockheed Martin, for example, have helped inspire young talent by sponsoring tournaments, science fairs and other innovation challenges. The Intel Foundation hosts some of the world’s largest pre-college science fair competitions and also runs the Educators Academy, an online community for K-12 educators. Lockheed Martin is also doing its part to advance STEM education, by sponsoring outreach activities for students from elementary school through college.

The Gender Factor

The gender disparity in the science and math-driven disciplines continues, but hidden in this problem is a source of immense potential. While women make up 51 percent of the overall workforce, they comprise only 26 percent of STEM workers. Solving for this disparity would go a long way to minimizing the skills gap, and helping the United States meet its projected skilled employment needs.

The computer science field highlights the slow pace of change. While the past decades’ attention to female equality has paid off as higher participation in most STEM fields, the number of women in the computational sciences has actually fallen. Recent Census Bureau findings show the number of female computer workers, employed in such roles as developers, programmers, and security analysts, has been on a 20-plus-year decline. In 1990, a full third of computer workers were women, but now that number has dropped to 27 percent.

An article at the Alantic about the “Brogrammer Effect” delves further into the data, noting the women in computer science are more likely to be Web developers (40 percent) than software developers (22 percent). The author makes the connection that less women are entering the field because they’re not pursuing computer science degrees: women’s participation in computer science education peaked in the 1980s. So why the lack of interest?

There are certainly cultural implications. Where male nerdism is accepted, embraced even, geeky women don’t have quite the same cachet. And while it’s easy to think of geek-chic role models like Steve Jobs or Mark Zuckerberg, their female equivalents don’t spring as readily to mind.

According to a recent US Census survey, computer workers make up about a half of STEM employment, and STEM pays well. Students who pursue a degree in a field pertaining to computers, mathematics, statistics or engineering are the most likely to secure full-time, year-round employment and the least likely to be unemployed. Earnings paralleled employment rates, with engineering majors averaging earnings of $92,000 per year and those coming from arts and humanities fields making about $55,000 annually.

Even the social studies, the arts and humanities, which tend to be more female-dominated, are becoming more technology-driven and are tapping the benefits of computer science. New research fields are springing up with names like “petascale humanities.” In fact, a new acronym has arisen that reflects the importance of the arts in the national curricula and the new economy. Proponents of “STEAM” (the “A” is for Arts) point out that creativity is an essential component of innovation.

Women continue to earn less than their male counterparts across every field of degree. Still women in high-tech jobs earn about 25 percent more than those in non-science fields. Advocates should not be afraid to play the money card, observes the executive director of the nonprofit group Science Club for Girls, Connie Chow, in this New York Times piece on the dearth of women scientists. That earning-potential can have a strong motivating effect, especially for students in low-income communities.

Preparation and Inspiration

Community and education leaders maintain that increasing student engagement in STEM subjects and addressing the shortage of qualified STEM teachers are necessary to ensure the future success of the US. For all students, and for women and minorities especially, early exposure to STEM subjects is critically important, as is being surrounded by a community of STEM professionals.

Central to this strategy is recruiting qualified teachers and giving them the means to develop into effective instructors. Studies confirm the common sense idea that there is a strong link between teacher performance and student success. The President’s Council of Advisors on Science and Technology (PCAST) estimates that the US will need more than 100,000 STEM teachers over the next decade.

The authors of the report advise: “To meet our needs for a STEM-capable citizenry, a STEM-proficient workforce, and future STEM experts, the nation must focus on two complementary goals: We must prepare all students, including girls and minorities who are underrepresented in these fields, to be proficient in STEM subjects. And we must inspire all students to learn STEM and, in the process, motivate many of them to pursue STEM careers.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This