Supercomputing Enables Climate Time Machine

By Tiffany Trader

September 23, 2013

September is Supercomputing Month at the Department of Energy (DOE), so the government labs are showcasing some of the ground-breaking research that’s come about thanks to advancements in HPC technology and expertise. While it’s difficult to think of a scientific discipline, or even an academic field, that has not benefited from the enabling boost of souped-up computational power, climate research stands out as being particularly dependent on these compute and data-intensive capabilities.

What makes climate change unique is the necessity for large-scale models that have multiple variables, each complex in their own right. These elements include sea temperatures, sea currents, sea ice, the interaction between the surface of the ocean and the atmosphere, air temperatures over land and the impact of clouds. A supercomputer has to take into account all these factors, and more, and calculate all the possible ways they can interact. Simulations can tie up the biggest supercomputers in the world for weeks at a time. The scope and necessity of such an endeavor is matched only by the largest of supercomputing centers, which in the US, means the DOE labs.

As the primary scientific computing facility for the DOE’s Office of Science, National Energy Research Scientific Computing Center (NERSC) – a division of the Lawrence Berkeley National Laboratory – is one of the largest facilities in the world dedicated to basic science research. A sizable portion (12 percent) of the supercomputing resources at NERSC is allocated to global climate change research. That’s nearly 150 million processor-hours of highly-tuned computational might focused on an issue that is critical to humanity’s future.

With each generation of supercomputers exponentially more powerful, climate models grow increasingly detailed. Science Writer Jon Bashor notes that the best global models of the late 1990s treated the western United States from the Pacific Ocean to the Rocky Mountains as a uniform landmass, even though there are topological features, like mountains, deserts and bodies of water, that affect climate. With the advances in hardware and software over the last two decades, today’s models have improved resolution down to 10-kilometer square blocks, while the next generation will drill down to the 2-kilometer level. The more fine-grained the models become, the more accurate the predictions will be.

Climate change is one of the most pressing issues facing our planet today, so accuracy is extremely important. People want to know if the models can be trusted and to what degree. Confidence is especially critical in estimates of anthropogenic climate change. Models are often vetted by checking certain scenarios against real-world results. A common evaluation technique is to “predict” climate sequences that have already occurred. This kind of backwards-looking analysis was taken on by the 20th Century Reanalysis Project, under the leadership of Gil Compo of the University of Colorado, Boulder, and the National Oceanic and Atmospheric Administration’s (NOAA) Earth System Research Laboratory. The project was awarded 8 million processor-hours at NERSC.

The project relies on a database of extreme global weather events from 1871 to the present day, culled from newspaper weather reports, measurements on land and sea for the first decades, and then as technology evolved, there were more detailed measurements from aircraft, satellites and other sensors. The team of top climate scientists fed the data into powerful supercomputers, including those at NERSC and the Oak Ridge Leadership Computing Facility in Tennessee, to create virtual climate time machine.

Click on image to reveal full-sized graphic.

Simulations based on the model showed a remarkable degree of prescience. “The model accurately predicted a number of extreme weather conditions, including El Niño occurrences, the 1922 Knickerbocker snowstorm that hit the Atlantic Coast (causing the roof of the Knickerbocker Theater in Washington, D.C., to collapse, killing 98 people and injuring 133), the 1930s Dust Bowl and a hurricane that smashed into New York City in 1938,” reports Bashor.

The “predictions” were not only possible, but were calculated with great accuracy. Compo and his team had constructed a map of the the earth’s weather and climate variations since the late 1800s. The next step was using the data assimilation system for real predictions – specifically to anticipate future warming patterns.

As recently reported in Geophysical Research Letters, ongoing research carried out under the 20th Century Reanalysis Project has yielded independent confirmation of global land warming since 1901, providing further evidence of anthropogenic global climate change. Up to this point, the case for global climate warming rested on long-term measurements of air temperature from stations around the world. The Reanalysis Project, however, draws on other historical observations, including barometric pressure from 1901-2010.

“This is really the essence of science,” says Compo. “There is knowledge ‘A’ from one source and you think, ‘Can I get to that same knowledge from a completely different source?’ Since we had already produced the dataset, we looked at just how close our temperatures estimated using barometers were to the temperatures using thermometers.”

The 20th Century Reanalysis Project has been instrumental in boosting the confidence in estimates of past, present and future climate change, according to Compo. And because key variations and trends line up with traditional climate models, it increases the robustness of conclusions based on those data sets.

“If, for some reason, you didn’t believe global warming was happening, this confirms that global warming really has been occurring since the early 20th century,” notes Compo.

Related Items

DOE Supercomputer Hack Results in Guilty Plea 

One Step Closer to Fusion Energy 

Researchers Squeeze Record I/O from Hopper 

NERSC Managers Shed Light on ‘Edison’ 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This