Supercomputing Enables Climate Time Machine

By Tiffany Trader

September 23, 2013

September is Supercomputing Month at the Department of Energy (DOE), so the government labs are showcasing some of the ground-breaking research that’s come about thanks to advancements in HPC technology and expertise. While it’s difficult to think of a scientific discipline, or even an academic field, that has not benefited from the enabling boost of souped-up computational power, climate research stands out as being particularly dependent on these compute and data-intensive capabilities.

What makes climate change unique is the necessity for large-scale models that have multiple variables, each complex in their own right. These elements include sea temperatures, sea currents, sea ice, the interaction between the surface of the ocean and the atmosphere, air temperatures over land and the impact of clouds. A supercomputer has to take into account all these factors, and more, and calculate all the possible ways they can interact. Simulations can tie up the biggest supercomputers in the world for weeks at a time. The scope and necessity of such an endeavor is matched only by the largest of supercomputing centers, which in the US, means the DOE labs.

As the primary scientific computing facility for the DOE’s Office of Science, National Energy Research Scientific Computing Center (NERSC) – a division of the Lawrence Berkeley National Laboratory – is one of the largest facilities in the world dedicated to basic science research. A sizable portion (12 percent) of the supercomputing resources at NERSC is allocated to global climate change research. That’s nearly 150 million processor-hours of highly-tuned computational might focused on an issue that is critical to humanity’s future.

With each generation of supercomputers exponentially more powerful, climate models grow increasingly detailed. Science Writer Jon Bashor notes that the best global models of the late 1990s treated the western United States from the Pacific Ocean to the Rocky Mountains as a uniform landmass, even though there are topological features, like mountains, deserts and bodies of water, that affect climate. With the advances in hardware and software over the last two decades, today’s models have improved resolution down to 10-kilometer square blocks, while the next generation will drill down to the 2-kilometer level. The more fine-grained the models become, the more accurate the predictions will be.

Climate change is one of the most pressing issues facing our planet today, so accuracy is extremely important. People want to know if the models can be trusted and to what degree. Confidence is especially critical in estimates of anthropogenic climate change. Models are often vetted by checking certain scenarios against real-world results. A common evaluation technique is to “predict” climate sequences that have already occurred. This kind of backwards-looking analysis was taken on by the 20th Century Reanalysis Project, under the leadership of Gil Compo of the University of Colorado, Boulder, and the National Oceanic and Atmospheric Administration’s (NOAA) Earth System Research Laboratory. The project was awarded 8 million processor-hours at NERSC.

The project relies on a database of extreme global weather events from 1871 to the present day, culled from newspaper weather reports, measurements on land and sea for the first decades, and then as technology evolved, there were more detailed measurements from aircraft, satellites and other sensors. The team of top climate scientists fed the data into powerful supercomputers, including those at NERSC and the Oak Ridge Leadership Computing Facility in Tennessee, to create virtual climate time machine.

Click on image to reveal full-sized graphic.

Simulations based on the model showed a remarkable degree of prescience. “The model accurately predicted a number of extreme weather conditions, including El Niño occurrences, the 1922 Knickerbocker snowstorm that hit the Atlantic Coast (causing the roof of the Knickerbocker Theater in Washington, D.C., to collapse, killing 98 people and injuring 133), the 1930s Dust Bowl and a hurricane that smashed into New York City in 1938,” reports Bashor.

The “predictions” were not only possible, but were calculated with great accuracy. Compo and his team had constructed a map of the the earth’s weather and climate variations since the late 1800s. The next step was using the data assimilation system for real predictions – specifically to anticipate future warming patterns.

As recently reported in Geophysical Research Letters, ongoing research carried out under the 20th Century Reanalysis Project has yielded independent confirmation of global land warming since 1901, providing further evidence of anthropogenic global climate change. Up to this point, the case for global climate warming rested on long-term measurements of air temperature from stations around the world. The Reanalysis Project, however, draws on other historical observations, including barometric pressure from 1901-2010.

“This is really the essence of science,” says Compo. “There is knowledge ‘A’ from one source and you think, ‘Can I get to that same knowledge from a completely different source?’ Since we had already produced the dataset, we looked at just how close our temperatures estimated using barometers were to the temperatures using thermometers.”

The 20th Century Reanalysis Project has been instrumental in boosting the confidence in estimates of past, present and future climate change, according to Compo. And because key variations and trends line up with traditional climate models, it increases the robustness of conclusions based on those data sets.

“If, for some reason, you didn’t believe global warming was happening, this confirms that global warming really has been occurring since the early 20th century,” notes Compo.

Related Items

DOE Supercomputer Hack Results in Guilty Plea 

One Step Closer to Fusion Energy 

Researchers Squeeze Record I/O from Hopper 

NERSC Managers Shed Light on ‘Edison’ 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LANL Researchers Simulate Billion-Atom Biomolecule

April 23, 2019

Simulating large biomolecules has long been challenging. Now, researchers from Los Alamos National Laboratory, RIKEN Center for Computational Science in Japan, the New Mexico Consortium, and New York University have succ Read more…

By John Russell

Students Gird for Cluster Mayhem at ASC19

April 23, 2019

Final cluster configurations have been set, and competitors in the ASC19 Student Supercomputer Challenge have started running the various AI models and HPC benchmarks that will determine who is declared champion. But if Read more…

By Alex Woodie

Student Cluster Season Opener: ASC19

April 22, 2019

Calling all computer sports fans! Now hear this:  The 2019 Student Cluster Competition season is officially underway with the beginning of the ASC19 event on Tuesday, April 22nd. For you millions of student cluster c Read more…

By Dan Stark

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This