Many Cores, Large Memory, Low Latency Memory Access – Numascale Shows a New Way

By Nicole Hemsoth

September 30, 2013

Shared Memory – Cluster Price

The big differentiator for Numascale’s interconnect, NumaConnect, compared to other high-speed interconnect technologies is the shared memory and cache coherency. These features allow programs to access any memory location and any memory mapped I/O device in a multiprocessor system with high degree of efficiency. It provides scalable systems with a unified programming model that stays the same from the small multi-core machines used in laptops and desktops to the largest imaginable single system image machines that may contain thousands of processors. The architecture is commonly classified as ccNuma or Numa but the interconnect system can alternatively be used as low latency clustering interconnect.

The most prominent advantages that NumaConnect offers are:

  • NumaConnect offers true and transparent cache coherent shared memory NumaConnectimplemented in hardware at cluster price. Probably the most affordable large shared memory solution around.
  • NumaConnect offers the largest shared memory available today. The hardware can utilize a 256TB addressing space and no memory is lost to buffering of copies of remote memories.
  • It is a general conception that the shared memory model makes parallel programming easier than the clustering or message passing model. Parallel programming will probably never become really easy, so any simplification should be welcome. Thousands of years of work have been put into parallelizing software for clusters, and these applications will probably be running on clusters for a while. Applications that have not been moved to clusters or that are difficult to parallelize for message passing will benefit greatly from Numascale’s offering.
  • In the memory mapped I/O scheme of x86 servers all I/O devices will automatically be shared and all I/O devices in all boxes are directly available from any thread of the OS or application.
  • Numascale runs a plain standard OS with some minor add-ons to the standard Linux kernel, while some kernel parameters should preferably be optimized for the OS to run well on a large number of cores.
  • With NumaConnect the system can run a single image OS. This greatly simplifies the tasks of system maintenance and operation. In a very large system a highly reduced number of OSes can be used.
  • No virtualization software is needed to the NumaConnect systems. Virtualization systems tend to be large, large and complicated system software is not bug free and introduces execution overhead.

As compared to some emulation systems for large memories we think NumaConnect excels by:

  • The cache line level coherency that cannot be exploited by software systems gives much lower probability for false sharing. A cache line is 64 bytes and the pages that will be used for software systems are 4KBytes or 2Mbytes.
  • The system software has optimizations for cache line false sharing since this happens on standard multi-socket servers as well.
  • Buffer space for remote pages in software systems may consume as much as 25% of the memory and NumaConnect do not use any buffers in memory.
  • NumaConnect shows very good performance for random access in large data areas.

Integration in Commodity Servers

The Numascale systems are deployed by installing a card with PCI form factor into a standard server. This approach makes it possible to take advantage of the great price break of mass produced servers with volume applications outside the segment that NumaConnect covers. Serves from IBM and Supermicro are favored today and provide excellent building blocks for large memory systems in combination with the NumaConnect Cards.

Numascale servers

Designed for Scalability and Robustness

The design is implemented in a chip, NumaChip, produced by IBM Microelectronics. The chip holds all functions of the interconnect except the NumaCache, a cache for accesses from one node to its companion nodes in the system, where standard external DRAM modules are used.

NumaChip implements 12 bits for the physical node address, limiting the number of nodes in a single image system to 4,096. Each node can have multiple processor cores. The AMD processors can address 256TBytes of data and this limits total memory space of the systems.

Functionality is included to manage robustness issues associated with high node counts and extremely high requirements for data integrity with the ability to provide high availability for systems managing critical data in transaction processing and real-time control.

A directory based cache coherence protocol handles scaling with significant number of nodes sharing data to avoid overloading of the interconnect between nodes with coherency traffic which would seriously reduce real data throughput. 

The basic ring topology with distributed switching allows a number of different interconnect configurations that are more scalable than most other interconnect switch fabrics. This also eliminates the need for a centralized switch and includes inherent redundancy for multidimensional topologies. 

Integrated, distributed switching

The NumaChip contains an on-chip switch to connect to other nodes in a NumaChip based system and eliminating the need to use a centralized switch. The on-chip switch can connect systems in one, two or three dimensions. Small systems can use one, medium sized system two and large systems will use all three dimensions to provide efficient and scalable connectivity between processors.

The two- and three-dimensional topologies (torus) that have the advantage of built-in redundancy as opposed to systems based on centralized switches, where the switch represents a single point of failure.

The distributed switching reduces the cost of the system since there is no extra switch hardware to pay for. It also reduces the amount of rack space required to hold the system as well as the power consumption and heat dissipation from the switch hardware and the associated power supply energy loss.

Numascale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This