Small TACC Cluster Set to Shatter IOPS Ceiling

By Nicole Hemsoth

October 18, 2013

The Texas Advanced Computing Center (TACC) has been in the habit of spinning up some rather interesting machines these days, including the hybrid Stampede system. In early 2015, the center will be home to another notable resource—Wrangler, a data analysis and management cluster aimed at aiding the data-intensive need of the open science community.

Taking its place along Stampede’s side in the space that’s been left open from the retired Ranger machine, the new NSF-supported “big data” driven system will provide TACC and the communities it caters to with a Hadoop-ready Dell-supplied 120 node cluster. But that’s not the real story here; what sets this apart is the anticipated high performance NAND flash side, supplied by the (still stealth) company, DSSD.

According to one of the PIs on the new system, Chris Jordan, their high performance NAND tier that is set to deliver one terabyte per second and a whopping 275 million IOPS.

The key to that kind of remarkable storage performance is coming from the technology provided by DSSD. Chances are, you haven’t heard of them before unless you follow news about the trajectory of Sun co-founder Andy Bechtolsheim’s career. His startup, DSSD, has been in development mode for well over three years and is the subject of a number of patents, although there are still no public customers or definitive products. As Jordan described when asked how they came to acquire their NAND flash products, their job at TACC is to keep an eye on emerging technologies and they’re “well connected” with Bechtolsheim and other companies on the edge of offering products publicly.

Of the patents in question from DSSD (there are three that could be found) one seems most promising (again, we note that TACC’s Chris Jordan was unable to give us any detail—this is speculation) there is one for a storage system with “guaranteed read latency” filed in 2012 from DSSD developed by William H. Moore, Jeffrey S. Bonwick. Here, they describe “A method for writing data to persistent storage. The method includes receiving a first request to write a first datum to persistent storage including NAND dies, identifying a first NAND die in which to write a first copy of the first datum and a second NAND die in which to write a second copy, generating a second request to write the first copy of the first datum to the first NAND die and a third request to write the second copy to the second NAND die, and waiting until the first NAND die and second NAND die not are busy. Based on a determination that the first NAND die and the second NAND die are not busy: issuing the second request to the first NAND die, and issuing the third request to the second NAND die after the second request is complete.”

Again, we weren’t able to get any details, but we should note on a related front, Jordan says that the compute environment is what TACC defines as “embedded processing” which on a configuration level, is different than a typical Linux cluster setup with a large number of compute nodes and a separate storage subsystem with its own servers strung together with a high performance interconnect. Rather, in this case, storage will be closer to everything so that for the most part, users won’t go through an intermediate server to get to their data. This means fewer hops on the network between users and their data, which leads to higher performance and lower latency data access than what they might see with more horsepower-driven machine like Stampede.

Jordan tells us that Dell and DSSD are distinct, separate partners on the project and that while the NAND component wasn’t the sole basis for hardware decisions in general, it was a “very exciting part” of the initial concept. He noted that there are no special or custom Dell components for the system, but they did “work very closely” with Dell to achieve the desired result.

The Wrangler system will be the product of a $6 million NSF grant, which if you take some not-so-wild guesses, means that 120 nodes and some human support (the continuing support grant of another $6 million will be funded separately) equals quite a bit left over to fund this NAND storage effort.

Outside of the flashy side of the story, there are a few other elements worth noting. First, the system will be powered by 32 Haswell cores per node and while there are no hard, verified numbers to support the performance, we’ll be staying tuned to see how these early processors crunch some of the big data analytics problems the XSEDE and other scientific communities throw Haswell’s way. Further, to support the anticipated data-intensive workloads, they’ve made some noteworthy decisions on the memory front, adding 4 GB of RAM per core (versus 2 GB in a standard cluster) to lend an overall 128 GB of RAM to support faster storage access across the memory subsystem. Wrangler will also be able to rope in both 40 GbE and InfiniBand.

Additionally, this is one of a growing number of forays into the Hadoop and MapReduce space by a major research institution. TACC isn’t the first to install a Hadoop cluster, but according to Jordan, this cluster will likely grow—both in terms of additional nodes and the people required to support. Jordan told us that while at this point they’re using the native Apache Hadoop implementation, they haven’t ruled out the use of one of the commercial distributions (as offered by companies like Cloudera, MapR and Hortworks, for example).

Of the Hadoop, storage and processing environments, Jordan says that there were two real drivers for the design choices. First, he points to an increase in the overall need for a wider array of data analytics applications, which includes Hadoop and MapReduce type application, but also a host of other statistical and data mining tools as well as basic database applications. He says that while a traditional cluster environment can do all of those things, it’s far from optimal.

Additionally, he points to a growing class of persistent services for collecting, sharing and even analyzing data that are used by communities or large projects. These need to be available and accessible to cater to serve a cloud-based set of users. “Web users and web-based services are becoming a fundamental part of research in a way they haven’t been in the past,” he said, pointing to XSEDE and other projects, including domain-specific ones like iPlant, which serves as a science web application where users upload, share and analyze data or build their own VMs to run custom applications.

In addition to the system components we’ve already described, there will be two ten petabyte disk installations, one of which will be on site with the other at Indiana University, where it serve as an identical high capacity replicated storage resource.

We’ll catch up with TACC and hopefully DSSD at SC13 in Denver this year to see what we else we can learn.

Editor’s Note–

In an earlier version of this article we referenced a comparison between the IOPS numbers of the TACC system with Blue Waters IOPS numbers that we derived from a Data Direct Networks statement. These were related to the storage subsystem and were not a valid reference for comparison. Notes from NCSA below..

The article “Tiny TACC Cluster Set to Shatter IOPS Ceiling” included erroneous information about the Blue Waters system at NCSA.
Blue Waters does not have user-accessible flash storage. Blue Waters does have an online disk subsystem made up entirely of Sonexion storage units with 26 usable petabytes and performance greater than 1TB/s.
Blue Waters also has a 300+ usable petabyte nearline tape sub-system.
The 1.4 million IOPS value described in the article is the vendor quoted peak performance of a single DDN SFA12K storage unit that is a single component (1 of multiple) used to accelerate data access for the near-line tape subsystem and does not reflect the full performance of Blue Waters.
The timeframes of the technologies discussed are separated by approximately five years, with Blue Waters installed and completely in service, and Wrangler projected to be installed in 2015.
HPCwire regrets the erroneous information in the original version of the article.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This