Small TACC Cluster Set to Shatter IOPS Ceiling

By Nicole Hemsoth

October 18, 2013

The Texas Advanced Computing Center (TACC) has been in the habit of spinning up some rather interesting machines these days, including the hybrid Stampede system. In early 2015, the center will be home to another notable resource—Wrangler, a data analysis and management cluster aimed at aiding the data-intensive need of the open science community.

Taking its place along Stampede’s side in the space that’s been left open from the retired Ranger machine, the new NSF-supported “big data” driven system will provide TACC and the communities it caters to with a Hadoop-ready Dell-supplied 120 node cluster. But that’s not the real story here; what sets this apart is the anticipated high performance NAND flash side, supplied by the (still stealth) company, DSSD.

According to one of the PIs on the new system, Chris Jordan, their high performance NAND tier that is set to deliver one terabyte per second and a whopping 275 million IOPS.

The key to that kind of remarkable storage performance is coming from the technology provided by DSSD. Chances are, you haven’t heard of them before unless you follow news about the trajectory of Sun co-founder Andy Bechtolsheim’s career. His startup, DSSD, has been in development mode for well over three years and is the subject of a number of patents, although there are still no public customers or definitive products. As Jordan described when asked how they came to acquire their NAND flash products, their job at TACC is to keep an eye on emerging technologies and they’re “well connected” with Bechtolsheim and other companies on the edge of offering products publicly.

Of the patents in question from DSSD (there are three that could be found) one seems most promising (again, we note that TACC’s Chris Jordan was unable to give us any detail—this is speculation) there is one for a storage system with “guaranteed read latency” filed in 2012 from DSSD developed by William H. Moore, Jeffrey S. Bonwick. Here, they describe “A method for writing data to persistent storage. The method includes receiving a first request to write a first datum to persistent storage including NAND dies, identifying a first NAND die in which to write a first copy of the first datum and a second NAND die in which to write a second copy, generating a second request to write the first copy of the first datum to the first NAND die and a third request to write the second copy to the second NAND die, and waiting until the first NAND die and second NAND die not are busy. Based on a determination that the first NAND die and the second NAND die are not busy: issuing the second request to the first NAND die, and issuing the third request to the second NAND die after the second request is complete.”

Again, we weren’t able to get any details, but we should note on a related front, Jordan says that the compute environment is what TACC defines as “embedded processing” which on a configuration level, is different than a typical Linux cluster setup with a large number of compute nodes and a separate storage subsystem with its own servers strung together with a high performance interconnect. Rather, in this case, storage will be closer to everything so that for the most part, users won’t go through an intermediate server to get to their data. This means fewer hops on the network between users and their data, which leads to higher performance and lower latency data access than what they might see with more horsepower-driven machine like Stampede.

Jordan tells us that Dell and DSSD are distinct, separate partners on the project and that while the NAND component wasn’t the sole basis for hardware decisions in general, it was a “very exciting part” of the initial concept. He noted that there are no special or custom Dell components for the system, but they did “work very closely” with Dell to achieve the desired result.

The Wrangler system will be the product of a $6 million NSF grant, which if you take some not-so-wild guesses, means that 120 nodes and some human support (the continuing support grant of another $6 million will be funded separately) equals quite a bit left over to fund this NAND storage effort.

Outside of the flashy side of the story, there are a few other elements worth noting. First, the system will be powered by 32 Haswell cores per node and while there are no hard, verified numbers to support the performance, we’ll be staying tuned to see how these early processors crunch some of the big data analytics problems the XSEDE and other scientific communities throw Haswell’s way. Further, to support the anticipated data-intensive workloads, they’ve made some noteworthy decisions on the memory front, adding 4 GB of RAM per core (versus 2 GB in a standard cluster) to lend an overall 128 GB of RAM to support faster storage access across the memory subsystem. Wrangler will also be able to rope in both 40 GbE and InfiniBand.

Additionally, this is one of a growing number of forays into the Hadoop and MapReduce space by a major research institution. TACC isn’t the first to install a Hadoop cluster, but according to Jordan, this cluster will likely grow—both in terms of additional nodes and the people required to support. Jordan told us that while at this point they’re using the native Apache Hadoop implementation, they haven’t ruled out the use of one of the commercial distributions (as offered by companies like Cloudera, MapR and Hortworks, for example).

Of the Hadoop, storage and processing environments, Jordan says that there were two real drivers for the design choices. First, he points to an increase in the overall need for a wider array of data analytics applications, which includes Hadoop and MapReduce type application, but also a host of other statistical and data mining tools as well as basic database applications. He says that while a traditional cluster environment can do all of those things, it’s far from optimal.

Additionally, he points to a growing class of persistent services for collecting, sharing and even analyzing data that are used by communities or large projects. These need to be available and accessible to cater to serve a cloud-based set of users. “Web users and web-based services are becoming a fundamental part of research in a way they haven’t been in the past,” he said, pointing to XSEDE and other projects, including domain-specific ones like iPlant, which serves as a science web application where users upload, share and analyze data or build their own VMs to run custom applications.

In addition to the system components we’ve already described, there will be two ten petabyte disk installations, one of which will be on site with the other at Indiana University, where it serve as an identical high capacity replicated storage resource.

We’ll catch up with TACC and hopefully DSSD at SC13 in Denver this year to see what we else we can learn.

Editor’s Note–

In an earlier version of this article we referenced a comparison between the IOPS numbers of the TACC system with Blue Waters IOPS numbers that we derived from a Data Direct Networks statement. These were related to the storage subsystem and were not a valid reference for comparison. Notes from NCSA below..

The article “Tiny TACC Cluster Set to Shatter IOPS Ceiling” included erroneous information about the Blue Waters system at NCSA.
Blue Waters does not have user-accessible flash storage. Blue Waters does have an online disk subsystem made up entirely of Sonexion storage units with 26 usable petabytes and performance greater than 1TB/s.
Blue Waters also has a 300+ usable petabyte nearline tape sub-system.
The 1.4 million IOPS value described in the article is the vendor quoted peak performance of a single DDN SFA12K storage unit that is a single component (1 of multiple) used to accelerate data access for the near-line tape subsystem and does not reflect the full performance of Blue Waters.
The timeframes of the technologies discussed are separated by approximately five years, with Blue Waters installed and completely in service, and Wrangler projected to be installed in 2015.
HPCwire regrets the erroneous information in the original version of the article.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This