GPU Database Speeds Big Data Visualization

By Tiffany Trader

October 21, 2013

Creating visualizations of enormous datasets used to be a strictly HPC endeavor, but that’s starting to change. A new massively parallel database, called MapD, developed by MIT researchers Todd Mostak and Samuel Madden, uses off-the-shelf GPUs to crunch complex spatial and GIS data in real time. The approach is significantly faster than conventional CPU-based systems. Using a single high-performance GPU card, Mostak reported a 70-fold speedup in the rendering of Twitter data.

As this article at MIT Technology Review explains, the “new technology achieves big speed gains by storing the data in the onboard memory of graphics processing units (GPUs) instead of in central processing units (CPUs), as is conventional.”

Falling hardware prices and the advance of social media analytics have made visualization technology more accessible; however, turning big datasets into useful animations was still a time-consuming process for researchers who lacked a powerful workstation or cluster.

Where previous technology would take seconds or longer to render data into images or animations, MapD turns millions of data points into maps and animations in just milliseconds. The MapD technology will work for different kinds of data, but the prototype is being demonstrated on tweets. As the video below illustrates, MapD can show how a meme (in this case “rain”) is trending in real time on regional or world maps. The user can set search terms and other parameters, e.g., time frame or geographical region, and the new visualization appears instantly. It’s a lot like using a search engine.

The impetus for the idea came during Mostak’s time as a Harvard graduate student in Middle Eastern studies. His thesis project on Egyptian politics during the Arab Spring required some 40 million geolocated tweets to be processed, but mapping the large dataset for interactive analysis would take days. His solution was to use inexpensive hardware designed for gamers, i.e. GPUs, to build his own database.

“By building a tool to explore data sets like this in a truly interactive fashion, with latencies measured in milliseconds rather than seconds or minutes, we hope to remove a computational bottleneck from the process of hypothesis formulation, testing, and refinement,” Mostak says.

One of the early adopters of this technology will be Sunlight Foundation, which is working for open and transparent campaign financing. The organization will use MapD to analyze 22 years of US state and federal campaign donation records to see how the more than 20 million donations break down by donor, region, elected official and other factors.

The combination of low-cost analytics tools and social media data are a powerful force for the democratization of big data visualization with implications for business, government and academia. For example, the ability to harness geographical data from mobile devices and social media streams in real time would be a tremendous resource for epidemiology and disaster response teams.

Even though MapD has just launched, the research team already has plans to expand its hardware support to include Intel parts (perhaps Phi) and general x86 processors. Mostak also has reported that he’s 99 percent sure he wants to make MapD open source. He’ll keep certain parallel processing algorithms proprietary, but publish the base of the data processing system and the compute modules on an open source license.

public version of the tool has a database of 50 million geocoded tweets that were posted between September 28 and October 6. Visitors to the site can input “what,” “who” and “where” and then zoom in all the way down to the level of individual tweet data.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&D on energy technologies s Read more…

By Tiffany Trader

Training Time Slashed for Deep Learning

August 14, 2018

Fast.ai, an organization offering free courses on deep learning, claimed a new speed record for training a popular image database using Nvidia GPUs running on public cloud infrastructure. A pair of researchers trained Read more…

By George Leopold

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This