A Path to Many-Task Computing on the Xeon Phi

By Tiffany Trader

October 24, 2013

It’s been nearly a year since the Intel Xeon Phi Coprocessor debuted at SC12, and in that time, it has experienced strong acceptance from the community. But as this is a relatively new technology, research into its usefulness is still forthcoming.

Adding to the growing body of research on the Phi is “Understanding the Costs of Many-Task Computing Workloads on Intel Xeon Phi Coprocessors,” written by a team of Illinois-based computer scientists and presented at the 2nd Greater Chicago Area System Research Workshop (GCASR) in May 2013.

The paper focuses on the opportunities for Many-Task Computing (MTC) to leverage the Intel Xeon Phi architecture. The programming paradigm that is Many-Task Computing (MTC) serves as a bridge between high-performance computing (HPC) and high-throughput computing (HTC). As the name implies, Many-Task Computing reflects the practice of running many computational tasks (dependent or independent) over a brief period of time. In MTC, metrics are most often measured in seconds (i.e., FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (i.e., jobs) per month.

The impetus for the endeavor was explained thusly by the research team: “MTC has been well supported on Clouds, Grids, and Supercomputers on traditional computing architectures, but the abundance of hybrid large-scale systems using accelerators has motivated us to explore the support of MTC on the new Intel Xeon Phi accelerators.”

The crux of the researchers’ proposal is the creation of a new framework that “provides fine granularity for executing MTC applications across large scale compute clusters.” Integrating this capability into their existing graphics card framework, GeMTC, would “provide transparent access to GPUs, Xeon Phis, and future generations of accelerators to help bridge the gap into Exascale computing.”

The Intel Xeon Phi chip, aimed at highly parallel number-crunching, is the first product of Intel’s Many Integrated Core (MIC) architecture. In simple terms, the Phi coprocessor is an x86 based processor glued onto a PCIe 8x expansion card. The chip sports 60 cores, 4x hyper-threaded, for a total of 240 hardware threads, and stuffs just over 1 teraflop of double-precision performance in a single accelerator.

The first petascale adoption of Intel Xeon Phi coprocessors is Texas Advanced Computing Center’s Stampede system, which leverages 6,880 of these chips to arrive at 7.4 additional petaflops of peak computational performance. One of the most powerful supercomputers in the world, Stampede tops out at a total peak performance of 9.6 petaflops.

The paper seeks to provide a deep understanding of MTC on the Intel Xeon Phi architecture. The researchers test the performance of several different workloads using pre-production Intel Xeon Phi hardware and the Intel-provided SCIF protocol for communicating across the PCI-Express bus. With this setup, they achieve over 90 percent efficiency, a result that is close to or better than using OpenMP for offloading tasks over 300 uS.

Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi. Comparison between OpenMP and SCIF with individual offloads and batch offloads.
Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi.
Comparison between OpenMP and SCIF with individual
offloads and batch offloads.

They write: “This performance opens the opportunity for the development of a framework for executing heterogeneous tasks on the Xeon Phi alongside other potential accelerators including graphics cards for MTC applications.”

The Intel Xeon Phi coprocessor is similar to other hardware accelerators such as general-purpose GPUs (GPGPUs) but there are important distinctions. Graphics cards, specifically GPGPUs, have become a popular means of providing parallelism for HPC applications. But extracting performance gains from GPUs means a retooling of the code, which can be time-consuming and requires considerable expertise. The claim from Intel is that the Phi provides a more familiar environment, which makes it easier to program.

The experiment employed a pre-production Xeon Phi – a 61-core version featuring 8GB of GDDR5 connected to the host via a PCI Express bus. One of these cores is reserved for the Linux OS. The authors note that with this platform, “it is possible to use OpenMP, POSIX threads, OpenCL, Intel Math Kernel Library, MPI, or other popular libraries to develop and offload applications to the accelerator.”

When the researchers compared the efficiency of offloading 128 tasks to Xeon Phi between OpenMP and SCIF with individual offloads and batch offloads, they found that jobs over 320 uS benefit from the SCIF framework when sent in this length of a batch with performance that was slightly above OpenMP.

The experiment shows it’s possible to achieve minimum overhead with the Xeon Phi by directly communicating between the host and accelerator via SCIF across the PCI Express bus. The preliminary results suggest that under the authors’ proposed framework, “the resources of a Xeon Phi could be shared across multiple processes and users in a large scale computing environment while maintaining high performance through the use of specialized microkernels.”

Just like GeMTC, the new framework would include three types off operations: Push/Poll for sending and receiving jobs, Malloc/Free for preparing device memory, and a memory copy operation to copy data to or from the accelerator. A tie-in to Swift/T could be used for multi-node configurations.

In the future, the research team will turn their attention to using the Phi for other science codes, including Molecular Dynamics applications, Protein Simulators and more.

Authors on this paper include Jeffrey Johnson, Scott J. Krieder, Benjamin Grimmer – all from the Illinois Institute of Technology – and Justin M. Wozniak (from Argonne National Laboratory), Michael Wilde (Argonne and the University of Chicago) and Ioan Raicu (Illinois Institute of Technology and the University of Chicago).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This