A Path to Many-Task Computing on the Xeon Phi

By Tiffany Trader

October 24, 2013

It’s been nearly a year since the Intel Xeon Phi Coprocessor debuted at SC12, and in that time, it has experienced strong acceptance from the community. But as this is a relatively new technology, research into its usefulness is still forthcoming.

Adding to the growing body of research on the Phi is “Understanding the Costs of Many-Task Computing Workloads on Intel Xeon Phi Coprocessors,” written by a team of Illinois-based computer scientists and presented at the 2nd Greater Chicago Area System Research Workshop (GCASR) in May 2013.

The paper focuses on the opportunities for Many-Task Computing (MTC) to leverage the Intel Xeon Phi architecture. The programming paradigm that is Many-Task Computing (MTC) serves as a bridge between high-performance computing (HPC) and high-throughput computing (HTC). As the name implies, Many-Task Computing reflects the practice of running many computational tasks (dependent or independent) over a brief period of time. In MTC, metrics are most often measured in seconds (i.e., FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (i.e., jobs) per month.

The impetus for the endeavor was explained thusly by the research team: “MTC has been well supported on Clouds, Grids, and Supercomputers on traditional computing architectures, but the abundance of hybrid large-scale systems using accelerators has motivated us to explore the support of MTC on the new Intel Xeon Phi accelerators.”

The crux of the researchers’ proposal is the creation of a new framework that “provides fine granularity for executing MTC applications across large scale compute clusters.” Integrating this capability into their existing graphics card framework, GeMTC, would “provide transparent access to GPUs, Xeon Phis, and future generations of accelerators to help bridge the gap into Exascale computing.”

The Intel Xeon Phi chip, aimed at highly parallel number-crunching, is the first product of Intel’s Many Integrated Core (MIC) architecture. In simple terms, the Phi coprocessor is an x86 based processor glued onto a PCIe 8x expansion card. The chip sports 60 cores, 4x hyper-threaded, for a total of 240 hardware threads, and stuffs just over 1 teraflop of double-precision performance in a single accelerator.

The first petascale adoption of Intel Xeon Phi coprocessors is Texas Advanced Computing Center’s Stampede system, which leverages 6,880 of these chips to arrive at 7.4 additional petaflops of peak computational performance. One of the most powerful supercomputers in the world, Stampede tops out at a total peak performance of 9.6 petaflops.

The paper seeks to provide a deep understanding of MTC on the Intel Xeon Phi architecture. The researchers test the performance of several different workloads using pre-production Intel Xeon Phi hardware and the Intel-provided SCIF protocol for communicating across the PCI-Express bus. With this setup, they achieve over 90 percent efficiency, a result that is close to or better than using OpenMP for offloading tasks over 300 uS.

Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi. Comparison between OpenMP and SCIF with individual offloads and batch offloads.
Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi.
Comparison between OpenMP and SCIF with individual
offloads and batch offloads.

They write: “This performance opens the opportunity for the development of a framework for executing heterogeneous tasks on the Xeon Phi alongside other potential accelerators including graphics cards for MTC applications.”

The Intel Xeon Phi coprocessor is similar to other hardware accelerators such as general-purpose GPUs (GPGPUs) but there are important distinctions. Graphics cards, specifically GPGPUs, have become a popular means of providing parallelism for HPC applications. But extracting performance gains from GPUs means a retooling of the code, which can be time-consuming and requires considerable expertise. The claim from Intel is that the Phi provides a more familiar environment, which makes it easier to program.

The experiment employed a pre-production Xeon Phi – a 61-core version featuring 8GB of GDDR5 connected to the host via a PCI Express bus. One of these cores is reserved for the Linux OS. The authors note that with this platform, “it is possible to use OpenMP, POSIX threads, OpenCL, Intel Math Kernel Library, MPI, or other popular libraries to develop and offload applications to the accelerator.”

When the researchers compared the efficiency of offloading 128 tasks to Xeon Phi between OpenMP and SCIF with individual offloads and batch offloads, they found that jobs over 320 uS benefit from the SCIF framework when sent in this length of a batch with performance that was slightly above OpenMP.

The experiment shows it’s possible to achieve minimum overhead with the Xeon Phi by directly communicating between the host and accelerator via SCIF across the PCI Express bus. The preliminary results suggest that under the authors’ proposed framework, “the resources of a Xeon Phi could be shared across multiple processes and users in a large scale computing environment while maintaining high performance through the use of specialized microkernels.”

Just like GeMTC, the new framework would include three types off operations: Push/Poll for sending and receiving jobs, Malloc/Free for preparing device memory, and a memory copy operation to copy data to or from the accelerator. A tie-in to Swift/T could be used for multi-node configurations.

In the future, the research team will turn their attention to using the Phi for other science codes, including Molecular Dynamics applications, Protein Simulators and more.

Authors on this paper include Jeffrey Johnson, Scott J. Krieder, Benjamin Grimmer – all from the Illinois Institute of Technology – and Justin M. Wozniak (from Argonne National Laboratory), Michael Wilde (Argonne and the University of Chicago) and Ioan Raicu (Illinois Institute of Technology and the University of Chicago).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This