A Path to Many-Task Computing on the Xeon Phi

By Tiffany Trader

October 24, 2013

It’s been nearly a year since the Intel Xeon Phi Coprocessor debuted at SC12, and in that time, it has experienced strong acceptance from the community. But as this is a relatively new technology, research into its usefulness is still forthcoming.

Adding to the growing body of research on the Phi is “Understanding the Costs of Many-Task Computing Workloads on Intel Xeon Phi Coprocessors,” written by a team of Illinois-based computer scientists and presented at the 2nd Greater Chicago Area System Research Workshop (GCASR) in May 2013.

The paper focuses on the opportunities for Many-Task Computing (MTC) to leverage the Intel Xeon Phi architecture. The programming paradigm that is Many-Task Computing (MTC) serves as a bridge between high-performance computing (HPC) and high-throughput computing (HTC). As the name implies, Many-Task Computing reflects the practice of running many computational tasks (dependent or independent) over a brief period of time. In MTC, metrics are most often measured in seconds (i.e., FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (i.e., jobs) per month.

The impetus for the endeavor was explained thusly by the research team: “MTC has been well supported on Clouds, Grids, and Supercomputers on traditional computing architectures, but the abundance of hybrid large-scale systems using accelerators has motivated us to explore the support of MTC on the new Intel Xeon Phi accelerators.”

The crux of the researchers’ proposal is the creation of a new framework that “provides fine granularity for executing MTC applications across large scale compute clusters.” Integrating this capability into their existing graphics card framework, GeMTC, would “provide transparent access to GPUs, Xeon Phis, and future generations of accelerators to help bridge the gap into Exascale computing.”

The Intel Xeon Phi chip, aimed at highly parallel number-crunching, is the first product of Intel’s Many Integrated Core (MIC) architecture. In simple terms, the Phi coprocessor is an x86 based processor glued onto a PCIe 8x expansion card. The chip sports 60 cores, 4x hyper-threaded, for a total of 240 hardware threads, and stuffs just over 1 teraflop of double-precision performance in a single accelerator.

The first petascale adoption of Intel Xeon Phi coprocessors is Texas Advanced Computing Center’s Stampede system, which leverages 6,880 of these chips to arrive at 7.4 additional petaflops of peak computational performance. One of the most powerful supercomputers in the world, Stampede tops out at a total peak performance of 9.6 petaflops.

The paper seeks to provide a deep understanding of MTC on the Intel Xeon Phi architecture. The researchers test the performance of several different workloads using pre-production Intel Xeon Phi hardware and the Intel-provided SCIF protocol for communicating across the PCI-Express bus. With this setup, they achieve over 90 percent efficiency, a result that is close to or better than using OpenMP for offloading tasks over 300 uS.

Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi. Comparison between OpenMP and SCIF with individual offloads and batch offloads.
Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi.
Comparison between OpenMP and SCIF with individual
offloads and batch offloads.

They write: “This performance opens the opportunity for the development of a framework for executing heterogeneous tasks on the Xeon Phi alongside other potential accelerators including graphics cards for MTC applications.”

The Intel Xeon Phi coprocessor is similar to other hardware accelerators such as general-purpose GPUs (GPGPUs) but there are important distinctions. Graphics cards, specifically GPGPUs, have become a popular means of providing parallelism for HPC applications. But extracting performance gains from GPUs means a retooling of the code, which can be time-consuming and requires considerable expertise. The claim from Intel is that the Phi provides a more familiar environment, which makes it easier to program.

The experiment employed a pre-production Xeon Phi – a 61-core version featuring 8GB of GDDR5 connected to the host via a PCI Express bus. One of these cores is reserved for the Linux OS. The authors note that with this platform, “it is possible to use OpenMP, POSIX threads, OpenCL, Intel Math Kernel Library, MPI, or other popular libraries to develop and offload applications to the accelerator.”

When the researchers compared the efficiency of offloading 128 tasks to Xeon Phi between OpenMP and SCIF with individual offloads and batch offloads, they found that jobs over 320 uS benefit from the SCIF framework when sent in this length of a batch with performance that was slightly above OpenMP.

The experiment shows it’s possible to achieve minimum overhead with the Xeon Phi by directly communicating between the host and accelerator via SCIF across the PCI Express bus. The preliminary results suggest that under the authors’ proposed framework, “the resources of a Xeon Phi could be shared across multiple processes and users in a large scale computing environment while maintaining high performance through the use of specialized microkernels.”

Just like GeMTC, the new framework would include three types off operations: Push/Poll for sending and receiving jobs, Malloc/Free for preparing device memory, and a memory copy operation to copy data to or from the accelerator. A tie-in to Swift/T could be used for multi-node configurations.

In the future, the research team will turn their attention to using the Phi for other science codes, including Molecular Dynamics applications, Protein Simulators and more.

Authors on this paper include Jeffrey Johnson, Scott J. Krieder, Benjamin Grimmer – all from the Illinois Institute of Technology – and Justin M. Wozniak (from Argonne National Laboratory), Michael Wilde (Argonne and the University of Chicago) and Ioan Raicu (Illinois Institute of Technology and the University of Chicago).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This