Essential Analogies for the HPC Advocate or the Trouble with Trying to Explain HPC

By Andrew Jones, NAG

October 25, 2013

Following Part 1, here are some more analogies for HPC …

Duh! Clue’s in the name: Big computer

I see this in so many “Intro to HPC” type courses – defining HPC as a computer 1000x more powerful than a desktop computer. Or worse, a computer that costs several million dollars, requires a megawatt of power, and fills a room. For bonus points the weight of the machine or how much cooling water it churns can be used. This is not really an analogy – simply a statement of the fact that HPC usually involves extreme computer hardware (albeit a narrow definition of HPC). But the reader/listener is left clueless as to the reason why anyone would fill a room full of computers and stump up for a $1m/year electricity bill. In fact, I would go as far as to say that this type of description of HPC (“it’s a big computer”) should be banned from the repertoire of any HPC person wishing to retain the community respect. Unless used in conjunction with a solid and inspiring description of the purpose and benefits of HPC.

Not special, just normal: Library

One of the great HPC analogies I have heard is one that describes where HPC should sit in the make-up of R&D organizations, especially universities. This one says that HPC should occupy the same position in any research organization (university) as a library – i.e., a core part of the essential infrastructure and a research tool that can be turned to many projects. A university for the last few centuries without a library? As silly as a modern R&D organization without access to HPC facilities. There are tiers of libraries too. Supporting the university library are national libraries with greater breadth of material. Equally important are the local research group libraries with much more specialized texts that may not be found in the larger more general purpose libraries. And the local libraries have a lower barrier to access. I’m sure the reader can work out the analogies to the traditional pyramid of HPC tiers.

Imagine a silly task: Aircraft vs. Car

One of the favorite hunting grounds for HPC analogies is explaining the nature and usefulness of the capability vs. capacity distinction. First, let me get a common mistake out of the way – I often see people trying to describe capability as the role of a supercomputer and capacity as the role of a cluster. There is no reason why a well architected commodity cluster cannot do capability computing and certainly poorly implemented supercomputers can be useless for capability work.

Usually we start by asking the reader/listener to imagine a task that needs doing/solving. Let’s say we have to move a thousand shoe boxes from one city to another. We can load up a car (or a group of cars if we have a team of willing friends) with boxes and drive them to the new location, and repeat as needed. As the problem gets bigger (more boxes or more distant cities) the cars take longer to complete the task, or more cars are needed. However the cars can still do the job. Now, imagine the destination city is across an ocean. It doesn’t matter how many cars are put on to the job or how much time is allocated, the cars cannot move the boxes across the ocean. But a cargo airplane can. This is capability – a job that cannot be achieved without that platform.

In HPC, capability computing jobs are those that cannot be completed by waiting longer or using a collection of smaller resources. This is often equated to jobs that require the use of the whole supercomputer (or half of it or some other large fraction) – but this is not a general answer to capability. Capability might only require a small fraction of the machine, but needs some special features it has. And not all jobs that use the full size of a system are capability jobs. There is also a great derived analogy – the aircraft can be used for both jobs (assuming availability of runways etc.). And so a capability computing system can be used for capacity work too – but the reverse is not true. Although of course, a system designed for capability might not be as cost-effective when used for capacity workloads.

Monuments: Ecosystems

Another aspect of HPC that cries out for effective analogies is the need to explain why supercomputing needs proper resourcing – i.e., people and software, not just a room filling lump of silicon and copper. One impactful analogy I have heard is to describe supercomputers purchased or deployed without adequate matching investment in software and people as “monuments.” Great to look at, but not very functional. One analogy is to consider a long haul passenger airplane. To deliver its mission, the airplane must be supplemented by an entire ecosystem of pilots, cabin crew (or flight attendants if on a US-based airline), runways, passenger terminals, air traffic control, processes/procedures, etc.

Likewise, HPC needs an ecosystem of people, software, datacenters, I/O subsystems, etc., to deliver its mission. And just like air travel, much of the complexity is in the ecosystem beyond the hardware product. And, here is the important bit, the differentiation and economic impact comes from getting the ecosystem right. Airlines have the same aircraft as their competitors just as companies normally have access to the same HPC technology as their competitors. But, how the staff interacts with the customers, quality of the back-end support, the processes/policies – these are what distinguish one airline from another. Likewise, the software, the support staff, the policies, etc., are what enables each company to gain a competitive advantage over their peers who may be using the same HPC technology.

The HPC Hotel

This analogy is great for explaining many different HPC concepts. Imagine your job is to refurbish a hotel. Clearly this task is easier if you have additional workers – more people means the job can be done quicker. And you can accept contracts to refurbish bigger hotels. But you need to coordinate all these extra workers of course. I’m sure you can see the use of this analogy for explaining parallelism and scalability (decomposition, coordination, scheduling conflicts, resource contention, etc.). You can also use it to introduce special vs. general purpose processors (everyone can do any job vs. combination of plumbers, electricians, plasterers, etc.). It can be used to explain that a variety of skills are needed to make the refurbishment (HPC simulation) effective.

The HPC hotel analogy can be used to show that the job of running a hotel is not the same as the job of designing a hotel is not the same as the job of building/refurbishing a hotel is not the same as staying in a hotel. In the same way, it is silly that one person expects to be expert in using HPC, and writing the applications, and running the cluster, and designing the cluster, and so on. The analogy can also be used to describe areas of differentiation – hotels (HPC) can differentiate from each other on both the rooms (hardware) and the services/staff/policies (support & software).

So, there you go – a light touch run-through of some common HPC analogies. What analogies do you use to describe HPC? Which ones have you found through feedback to be effective? Which ones are best left with those packing boxes that have been in the corner of the datacenter since before anyone can remember?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire